

AoPS Community

2006 France Team Selection Test

France Team Selection Test 2006

www.artofproblemsolving.com/community/c5352

by Igor, k2c901_1, ZetaX, grobber, darij grinberg, Megus, Michal Marcinkowski, K09, pbornsztein

Day	l
1	Let $ABCD$ be a square and let Γ be the circumcircle of $ABCD$. M is a point of Γ belonging to the arc CD which doesn't contain A . P and R are respectively the intersection points of (AM) with $[BD]$ and $[CD]$, Q and S are respectively the intersection points of (BM) with $[AC]$ and [DC].
	Prove that (PS) and (QR) are perpendicular.
2	Let a, b, c be three positive real numbers such that $abc = 1$. Show that:
	$\frac{a}{(a+1)(b+1)} + \frac{b}{(b+1)(c+1)} + \frac{c}{(c+1)(a+1)} \ge \frac{3}{4}.$
	When is there equality?
3	Let a , b be positive integers such that $b^n + n$ is a multiple of $a^n + n$ for all positive integers n . Prove that $a = b$.
	Proposed by Mohsen Jamali, Iran
Day 2	2
1	In a $2 \times n$ array we have positive reals s.t. the sum of the numbers in each of the n columns is 1. Show that we can select a number in each column s.t. the sum of the selected numbers in each row is at most $\frac{n+1}{4}$.
2	Given a triangle <i>ABC</i> satisfying $AC + BC = 3 \cdot AB$. The incircle of triangle <i>ABC</i> has center <i>I</i> and touches the sides <i>BC</i> and <i>CA</i> at the points <i>D</i> and <i>E</i> , respectively. Let <i>K</i> and <i>L</i> be the reflections of the points <i>D</i> and <i>E</i> with respect to <i>I</i> . Prove that the points <i>A</i> , <i>B</i> , <i>K</i> , <i>L</i> lie on one circle.
	Proposed by Dimitris Kontogiannis, Greece
3	Let $M = \{1, 2,, 3 \cdot n\}$. Partition M into three sets A, B, C which $card A = card B = card C$ = n.
	Prove that there exists a in A, b in B, c in C such that or $a = b + c$, or $b = c + a$, or $c = a + b$
	Edited by orl.
	-

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.