AoPS Community

France Team Selection Test 2006

www.artofproblemsolving.com/community/c5352
by Igor, k2c901_1, ZetaX, grobber, darij grinberg, Megus, Michal Marcinkowski, K09, pbornsztein

Day 1

1 Let $A B C D$ be a square and let Γ be the circumcircle of $A B C D . M$ is a point of Γ belonging to the arc $C D$ which doesn't contain A. P and R are respectively the intersection points of $(A M)$ with $[B D]$ and $[C D], Q$ and S are respectively the intersection points of $(B M)$ with $[A C]$ and [DC].
Prove that $(P S)$ and $(Q R)$ are perpendicular.
2 Let a, b, c be three positive real numbers such that $a b c=1$. Show that:

$$
\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)} \geq \frac{3}{4} .
$$

When is there equality?
$3 \quad$ Let a, b be positive integers such that $b^{n}+n$ is a multiple of $a^{n}+n$ for all positive integers n.
Prove that $a=b$.
Proposed by Mohsen Jamali, Iran

Day 2

1 In a $2 \times n$ array we have positive reals s.t. the sum of the numbers in each of the n columns is 1. Show that we can select a number in each column s.t. the sum of the selected numbers in each row is at most $\frac{n+1}{4}$.

2 Given a triangle $A B C$ satisfying $A C+B C=3 \cdot A B$. The incircle of triangle $A B C$ has center I and touches the sides $B C$ and $C A$ at the points D and E, respectively. Let K and L be the reflections of the points D and E with respect to I. Prove that the points A, B, K, L lie on one circle.

Proposed by Dimitris Kontogiannis, Greece
3 Let $M=\{1,2, \ldots, 3 \cdot n\}$. Partition M into three sets A, B, C which $\operatorname{card} A=\operatorname{card} B=\operatorname{card} C$ $=n$.
Prove that there exists a in A, b in B, c in C such that or $a=b+c$, or $b=c+a$, or $c=a+b$
Edited by orl.

