AoPS Community

France Team Selection Test 2007

www.artofproblemsolving.com/community/c5353
by Igor, silouan

Day 1

1 For a positive integer a, a^{\prime} is the integer obtained by the following method: the decimal writing of a^{\prime} is the inverse of the decimal writing of a (the decimal writing of a^{\prime} can begin by zeros, but not the one of a); for instance if $a=2370, a^{\prime}=0732$, that is 732 .

Let a_{1} be a positive integer, and $\left(a_{n}\right)_{n \geq 1}$ the sequence defined by a_{1} and the following formula for $n \geq 1$:

$$
a_{n+1}=a_{n}+a_{n}^{\prime} .
$$

Can a_{7} be prime?
2 Let a, b, c, d be positive reals such taht $a+b+c+d=1$.
Prove that:

$$
6\left(a^{3}+b^{3}+c^{3}+d^{3}\right) \geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8} .
$$

3 Let A, B, C, D be four distinct points on a circle such that the lines $(A C)$ and $(B D)$ intersect at E, the lines $(A D)$ and $(B C)$ intersect at F and such that $(A B)$ and $(C D)$ are not parallel.

Prove that C, D, E, F are on the same circle if, and only if, $(E F) \perp(A B)$.

Day 2

1 Do there exist 5 points in the space, such that for all $n \in\{1,2, \ldots, 10\}$ there exist two of them at distance between them n ?

2 Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all $x, y \in \mathbb{Z}$:

$$
f(x-y+f(y))=f(x)+f(y) .
$$

$3 \quad$ A point D is chosen on the side $A C$ of a triangle $A B C$ with $\angle C<\angle A<90^{\circ}$ in such a way that $B D=B A$. The incircle of $A B C$ is tangent to $A B$ and $A C$ at points K and L, respectively. Let J be the incenter of triangle $B C D$. Prove that the line $K L$ intersects the line segment $A J$ at its midpoint.

