Art of Problem Solving

AoPS Community

France Team Selection Test 2012

www.artofproblemsolving.com/community/c5354
by WakeUp

Day 1 March 10th
1 Let n and k be two positive integers. Consider a group of k people such that, for each group of n people, there is a ($n+1$)-th person that knows them all (if A knows B then B knows A).

1) If $k=2 n+1$, prove that there exists a person who knows all others.
2) If $k=2 n+2$, give an example of such a group in which no-one knows all others.

2 Let $A B C$ be an acute-angled triangle with $A B \neq A C$. Let Γ be the circumcircle, H the orthocentre and O the centre of Γ. M is the midpoint of $B C$. The line $A M$ meets Γ again at N and the circle with diameter $A M$ crosses Γ again at P. Prove that the lines $A P, B C, O H$ are concurrent if and only if $A H=H N$.

3 Let p be a prime number. Find all positive integers $a, b, c \geq 1$ such that:

$$
a^{p}+b^{p}=p^{c}
$$

Day 2 March 11th
$1 \quad$ Let $k>1$ be an integer. A function $f: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ is called k-tastrophic when for every integer $n>0$, we have $f_{k}(n)=n^{k}$ where f_{k} is the k-th iteration of f :

$$
f_{k}(n)=\underbrace{f \circ f \circ \cdots \circ f}_{k \text { times }}(n)
$$

For which k does there exist a k-tastrophic function?
2 Determine all non-constant polynomials $X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$ with integer coefficients for which the roots are exactly the numbers $a_{0}, a_{1}, \ldots, a_{n-1}$ (with multiplicity).

3 Let $A B C D$ be a convex quadrilateral whose sides $A D$ and $B C$ are not parallel. Suppose that the circles with diameters $A B$ and $C D$ meet at points E and F inside the quadrilateral. Let ω_{E} be the circle through the feet of the perpendiculars from E to the lines $A B, B C$ and $C D$. Let ω_{F} be the circle through the feet of the perpendiculars from F to the lines $C D, D A$ and $A B$. Prove that the midpoint of the segment $E F$ lies on the line through the two intersections of ω_{E} and ω_{F}.
Proposed by Carlos Yuzo Shine, Brazil

