

AoPS Community

2012 France Team Selection Test

France Team Selection Test 2012

www.artofproblemsolving.com/community/c5354 by WakeUp

Day 1 March 10th

2)	If $k = 2n + 1$, prove that there exists a person who knows all others. If $k = 2n + 2$, give an example of such a group in which no-one knows all others.
cer cire	ABC be an acute-angled triangle with $AB \neq AC$. Let Γ be the circumcircle, H the ortho- netre and O the centre of Γ . M is the midpoint of BC . The line AM meets Γ again at N and the cle with diameter AM crosses Γ again at P . Prove that the lines AP, BC, OH are concurrent and only if $AH = HN$.

3 Let *p* be a prime number. Find all positive integers $a, b, c \ge 1$ such that:

$$a^p + b^p = p^c.$$

Day 2 March 11th

1 Let k > 1 be an integer. A function $f : \mathbb{N}^* \to \mathbb{N}^*$ is called *k*-tastrophic when for every integer n > 0, we have $f_k(n) = n^k$ where f_k is the *k*-th iteration of f:

$$f_k(n) = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ times}}(n)$$

For which k does there exist a k-tastrophic function?

- **2** Determine all non-constant polynomials $X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ with integer coefficients for which the roots are exactly the numbers $a_0, a_1, \ldots, a_{n-1}$ (with multiplicity).
- **3** Let ABCD be a convex quadrilateral whose sides AD and BC are not parallel. Suppose that the circles with diameters AB and CD meet at points E and F inside the quadrilateral. Let ω_E be the circle through the feet of the perpendiculars from E to the lines AB, BC and CD. Let ω_F be the circle through the feet of the perpendiculars from F to the lines CD, DA and AB. Prove that the midpoint of the segment EF lies on the line through the two intersections of ω_E and ω_F .

Proposed by Carlos Yuzo Shine, Brazil

AoPS Online 🙋 AoPS Academy 🙋 AoPS

Art of Problem Solving is an ACS WASC Accredited School.