## AoPS Community

## France Team Selection Test 2014

www.artofproblemsolving.com/community/c5355
by lyukhson, Sayan

1 Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_{1}, \cdots, a_{d}$ such that $a_{1}+a_{2}+\cdots+a_{d}=n$ and $0 \leq a_{i} \leq 1$ for $i=1,2, \cdots, d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most 1.

2 Two circles $O_{1}$ and $O_{2}$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_{1}$ and $O_{2}$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $D C M$ intersect circles $O_{1}$ and $O_{2}$ respectively at points $E$ and $F$ (both distinct from $M$ ). Show that the circumcircles of triangles $M E F$ and $N E F$ have same radius length.

3 Prove that there exist infinitely many positive integers $n$ such that the largest prime divisor of $n^{4}+n^{2}+1$ is equal to the largest prime divisor of $(n+1)^{4}+(n+1)^{2}+1$.
$4 \quad$ Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ such that

$$
m^{2}+f(n) \mid m f(m)+n
$$

for all positive integers $m$ and $n$.
$5 \quad$ Let $\omega$ be the circumcircle of a triangle $A B C$. Denote by $M$ and $N$ the midpoints of the sides $A B$ and $A C$, respectively, and denote by $T$ the midpoint of the arc $B C$ of $\omega$ not containing $A$. The circumcircles of the triangles $A M T$ and $A N T$ intersect the perpendicular bisectors of $A C$ and $A B$ at points $X$ and $Y$, respectively; assume that $X$ and $Y$ lie inside the triangle $A B C$. The lines $M N$ and $X Y$ intersect at $K$. Prove that $K A=K T$.

6 Let $n$ be a positive integer and $x_{1}, x_{2}, \ldots, x_{n}$ be positive reals. Show that there are numbers $a_{1}, a_{2}, \ldots, a_{n} \in\{-1,1\}$ such that the following holds:

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2} \geq\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)^{2}
$$

