Art of Problem Solving

AoPS Community

National Olympiad 11-12 2008

www.artofproblemsolving.com/community/c5357
by freemind

Day 1 March 1st

1 Consider the equation $x^{4}-4 x^{3}+4 x^{2}+a x+b=0$, where $a, b \in \mathbb{R}$. Determine the largest value $a+b$ can take, so that the given equation has two distinct positive roots x_{1}, x_{2} so that $x_{1}+x_{2}=2 x_{1} x_{2}$.

2 Find the exact value of $E=\int_{0}^{\frac{\pi}{2}} \cos ^{1003} x \mathbf{d} x \cdot \int_{0}^{\frac{\pi}{2}} \cos ^{1004} x \mathrm{~d} x$.
3 In the usual coordinate system $x O y$ a line d intersect the circles $C_{1}:(x+1)^{2}+y^{2}=1$ and C_{2} : $(x-2)^{2}+y^{2}=4$ in the points A, B, C and D (in this order). It is known that $A\left(-\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ and $\angle B O C=60^{\circ}$. All the $O y$ coordinates of these 4 points are positive. Find the slope of d.

4 Define the sequence $\left(a_{p}\right)_{p \geq 0}$ as follows: $a_{p}=\frac{\binom{p}{0}}{2 \cdot 4}-\frac{\binom{p}{1}}{3 \cdot 5}+\frac{\binom{p}{2}}{4 \cdot 6}-\ldots+(-1)^{p} \cdot \frac{\binom{p}{p}}{(p+2)(p+4)}$. Find $\lim _{n \rightarrow \infty}\left(a_{0}+a_{1}+\ldots+a_{n}\right)$.

Day 2 March 2nd

$5 \quad$ Find the least positive integer n so that the polynomial $P(X)=\sqrt{3} \cdot X^{n+1}-X^{n}-1$ has at least one root of modulus 1 .
$6 \quad$ Find $\lim _{n \rightarrow \infty} a_{n}$ where $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{n}=\frac{1}{\sqrt{n^{2}+8 n-1}}+\frac{1}{\sqrt{n^{2}+16 n-1}}+\frac{1}{\sqrt{n^{2}+24 n-1}}+\ldots+$ $\frac{1}{\sqrt{9 n^{2}-1}}$.

7 Triangle $A B C$ has fixed vertices B and C, so that $B C=2$ and A is variable. Denote by H and G the orthocenter and the centroid, respectively, of triangle $A B C$. Let $F \in(H G)$ so that $\frac{H F}{F G}=3$. Find the locus of the point A so that $F \in B C$.
$8 \quad$ Evaluate $I=\int_{0}^{\frac{\pi}{4}}\left(\sin ^{6} 2 x+\cos ^{6} 2 x\right) \cdot \ln (1+\tan x) \mathbf{d} x$.

