AoPS Community

Taiwan National Olympiad 1992

www.artofproblemsolving.com/community/c5358
by N.T.TUAN

Day 1

1 Let A, B be two points on a give circle, and M be the midpoint of one of the arcs $A B$. Point C is the orthogonal projection of B onto the tangent l to the circle at A. The tangent at M to the circle meets $A C, B C$ at A^{\prime}, B^{\prime} respectively. Prove that if $B \hat{A} C<\frac{\pi}{8}$ then $S_{A B C}<2 S_{A^{\prime} B^{\prime} C^{\prime}}$.

2 Every positive integer can be represented as a sum of one or more consecutive positive integers. For each n, find the number of such represententation of n.

3 If $x_{1}, x_{2}, \ldots, x_{n}(n>2)$ are positive real numbers with $x_{1}+x_{2}+\ldots+x_{n}=1$. Prove that $x_{1}^{2} x_{2}+$ $x_{2}^{2} x_{3}+\ldots+x_{n}^{2} x_{1} \leq \frac{4}{27}$.

Day 2

4 For a positive integer number r, the sequence a_{1}, a_{2}, \ldots defined by $a_{1}=1$ and $a_{n+1}=\frac{n a_{n}+2(n+1)^{2 r}}{n+2} \forall n \geq$ 1. Prove that each a_{n} is positive integer number, and find $n^{\prime} s$ for which a_{n} is even.

5 A line through the incenter I of triangle $A B C$, perpendicular to $A I$, intersects $A B$ at P and $A C$ at Q. Prove that the circle tangent to $A B$ at P and to $A C$ at Q is also tangent to the circumcircle of triangle $A B C$.

6 Find the greatest positive integer A with the following property: For every permutation of $\{1001,1002, \ldots, 2000\}$, the sum of some ten consecutive terms is great than or equal to A.

