

AoPS Community

1992 Taiwan National Olympiad

Taiwan National Olympiad 1992

www.artofproblemsolving.com/community/c5358 by N.T.TUAN

Day 1

1	Let A, B be two points on a give circle, and M be the midpoint of one of the arcs AB . Point C is the orthogonal projection of B onto the tangent l to the circle at A . The tangent at M to the circle meets AC, BC at A', B' respectively. Prove that if $B\hat{A}C < \frac{\pi}{8}$ then $S_{ABC} < 2S_{A'B'C'}$.
2	Every positive integer can be represented as a sum of one or more consecutive positive integers. For each n , find the number of such represententation of n .
3	If $x_1, x_2,, x_n (n > 2)$ are positive real numbers with $x_1 + x_2 + + x_n = 1$. Prove that $x_1^2 x_2 + x_2^2 x_3 + + x_n^2 x_1 \le \frac{4}{27}$.
Day 2	2
4	For a positive integer number r , the sequence $a_1, a_2,$ defined by $a_1 = 1$ and $a_{n+1} = \frac{na_n + 2(n+1)^{2r}}{n+2} \forall n \ge 1$. Prove that each a_n is positive integer number, and find $n's$ for which a_n is even.
5	A line through the incenter L of triangle ABC perpendicular to AL intersects AB at P and AC
	at Q . Prove that the circle tangent to AB at P and to AC at Q is also tangent to the circumcircle of triangle ABC .

Art of Problem Solving is an ACS WASC Accredited School.