Art of Problem Solving

AoPS Community

Taiwan National Olympiad 1993

www.artofproblemsolving.com/community/c5359
by N.T.TUAN

Day 1

1 A sequence $\left(a_{n}\right)$ of positive integers is given by $a_{n}=\left[n+\sqrt{n}+\frac{1}{2}\right]$. Find all of positive integers which belong to the sequence.

2 Let E and F are distinct points on the diagonal $A C$ of a parallelogram $A B C D$. Prove that , if there exists a cricle through E, F tangent to rays $B A, B C$ then there also exists a cricle through E, F tangent to rays $D A, D C$.
$3 \quad$ Find all $x, y, z \in \mathbb{N}_{0}$ such that $7^{x}+1=3^{y}+5^{z}$.
Alternative formulation: Solve the equation $1+7^{x}=3^{y}+5^{z}$ in nonnegative integers x, y, z.

Day 2

4 In the Cartesian plane, let C be a unit circle with center at origin O. For any point Q in the plane distinct from O, define Q^{\prime} to be the intersection of the ray $O Q$ and the circle C. Prove that for any $P \in C$ and any $k \in \mathbb{N}$ there exists a lattice point $Q(x, y)$ with $|x|=k$ or $|y|=k$ such that $P Q^{\prime}<\frac{1}{2 k}$.

5 Assume $A=\left\{a_{1}, a_{2}, \ldots, a_{12}\right\}$ is a set of positive integers such that for each positive integer $n \leq 2500$ there is a subset S of A whose sum of elements is n. If $a_{1}<a_{2}<\ldots<a_{12}$, what is the smallest possible value of a_{1} ?

6 Let m be equal to 1 or 2 and $n<10799$ be a positive integer. Determine all such n for which $\sum_{k=1}^{n} \frac{1}{\sin k \sin (k+1)}=m \frac{\sin n}{\sin ^{2} 1}$.

