AoPS Community

Taiwan National Olympiad 1994

www.artofproblemsolving.com/community/c5360
by N.T.TUAN

Day 1

1 Let $A B C D$ be a quadrilateral with $A D=B C$ and $\widehat{A}+\widehat{B}=120^{\circ}$. Let us draw equilateral $A C P, D C Q, D B R$ away from $A B$. Prove that the points P, Q, R are collinear.

2 Let a, b, c are positive real numbers and α be any real number. Denote $f(\alpha)=a b c\left(a^{\alpha}+b^{\alpha}+\right.$ $\left.c^{\alpha}\right), g(\alpha)=a^{2+\alpha}(b+c-a)+b^{2+\alpha}(-b+c+a)+c^{2+\alpha}(b-c+a)$. Determine min $|f(\alpha)-g(\alpha)|$ and max $|f(\alpha)-g(\alpha)|$, if they are exists.
$3 \quad$ Let a be a positive integer such that $5^{1994}-1 \mid a$. Prove that the expression of a in base 5 contains at least 1994 nonzero digits.

Day 2

4 Prove that there are infinitely many positive integers n with the following property. For any n integers $a_{1}, a_{2}, \ldots, a_{n}$ which form in arithmetic progression, both the mean and the standard deviation of the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ are integers.
Remark. The mean and standard deviation of the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are defined by $\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$ and $\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}$, respectively.

5 Given $X=\{0, a, b, c\}$, let $M(X)=\{f \mid f: X \rightarrow X\}$ denote the set of all functions from X into itself. An addition table on X is given us follows: $+0 a b c 00 a b c a a 0 c b b b c 0 a c c b a 0$
a)If $S=\{f \in M(X) \mid f(x+y+x)=f(x)+f(y)+f(x) \forall x, y \in X\}$, find $|S|$.
b)If $I=\{f \in M(X) \mid f(x+x)=f(x)+f(x) \forall x \in X\}$, find $|I|$.
$6 \quad$ For $-1 \leq x \leq 1$ and $n \in \mathbb{N}$ define $T_{n}(x)=\frac{1}{2^{n}}\left[\left(x+\sqrt{1-x^{2}}\right)^{n}+\left(x-\sqrt{1-x^{2}}\right)^{n}\right]$.
a)Prove that T_{n} is a monic polynomial of degree n in x and that the maximum value of $\left|T_{n}(x)\right|$ is $\frac{1}{2^{n-1}}$.
b)Suppose that $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in \mathbb{R}[x]$ is a monic polynomial of degree n such that $p(x)>-\frac{1}{2^{n-1}}$ forall $x,-1 \leq x \leq 1$. Prove that there exists $x_{0},-1 \leq x_{0} \leq 1$ such that $p\left(x_{0}\right) \geq \frac{1}{2^{n-1}}$.

