Art of Problem Solving

AoPS Community

Taiwan National Olympiad 1995
www.artofproblemsolving.com/community/c5361
by N.T.TUAN

Day 1

1 Let $P(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in \mathbb{C}[x]$, where $a_{n}=1$. The roots of $P(x)$ are $b_{1}, b_{2}, \ldots, b_{n}$, where $\left|b_{1}\right|,\left|b_{2}\right|, \ldots,\left|b_{j}\right|>1$ and $\left|b_{j+1}\right|, \ldots,\left|b_{n}\right| \leq 1$. Prove that $\prod_{i=1}^{j}\left|b_{i}\right| \leq \sqrt{\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}+\ldots+\left|a_{n}\right|^{2}}$.

2 Given a sequence of eight integers $x_{1}, x_{2}, \ldots, x_{8}$ in a single operation one replaces these numbers with $\left|x_{1}-x_{2}\right|,\left|x_{2}-x_{3}\right|, \ldots,\left|x_{8}-x_{1}\right|$. Find all the eight-term sequences of integers which reduce to a sequence with all the terms equal after finitely many single operations.

3 Suppose that n persons meet in a meeting, and that each of the persons is acquainted to exactly 8 others. Any two acquainted persons have exactly 4 common acquaintances, and any two non-acquainted persons have exactly 2 common acquaintances. Find all possible values of n.

Day 2

4 Let $m_{1}, m_{2}, \ldots, m_{n}$ be mutually distinct integers. Prove that there exists a $f(x) \in \mathbb{Z}[x]$ of degree n satisfying the following two conditions:
a) $f\left(m_{i}\right)=-1 \forall i=1,2, \ldots, n$.
b) $f(x)$ is irreducible.

5 Let P be a point on the circumcircle of a triangle $A_{1} A_{2} A_{3}$, and let H be the orthocenter of the triangle. The feet B_{1}, B_{2}, B_{3} of the perpendiculars from P to $A_{2} A_{3}, A_{3} A_{1}, A_{1} A_{2}$ lie on a line. Prove that this line bisects the segment $P H$.

6 Let a, b, c, d are integers such that $(a, b)=(c, d)=1$ and $a d-b c=k>0$. Prove that there are exactly k pairs (x_{1}, x_{2}) of rational numbers with $0 \leq x_{1}, x_{2}<1$ for which both $a x_{1}+b x_{2}, c x_{1}+d x_{2}$ are integers.

