

AoPS Community

1995 Taiwan National Olympiad

Taiwan National Olympiad 1995

www.artofproblemsolving.com/community/c5361 by N.T.TUAN

Day	1	

1	Let $P(x) = a_0 + a_1 x + + a_n x^n \in \mathbb{C}[x]$, where $a_n = 1$. The roots of $P(x)$ are $b_1, b_2,, b_n$, where $ b_1 , b_2 ,, b_j > 1$ and $ b_{j+1} ,, b_n \le 1$. Prove that $\prod_{i=1}^j b_i \le \sqrt{ a_0 ^2 + a_1 ^2 + + a_n ^2}$.		
2	Given a sequence of eight integers $x_1, x_2,, x_8$ in a single operation one replaces these numbers with $ x_1 - x_2 , x_2 - x_3 ,, x_8 - x_1 $. Find all the eight-term sequences of integers which reduce to a sequence with all the terms equal after finitely many single operations.		
3	Suppose that n persons meet in a meeting, and that each of the persons is acquainted to exactly 8 others. Any two acquainted persons have exactly 4 common acquaintances, and any two non-acquainted persons have exactly 2 common acquaintances. Find all possible values of n .		
Day 2			
4	Let $m_1, m_2,, m_n$ be mutually distinct integers. Prove that there exists a $f(x) \in \mathbb{Z}[x]$ of degree n satisfying the following two conditions: a) $f(m_i) = -1 \forall i = 1, 2,, n$. b) $f(x)$ is irreducible.		
5	Let <i>P</i> be a point on the circumcircle of a triangle $A_1A_2A_3$, and let <i>H</i> be the orthocenter of the triangle. The feet B_1, B_2, B_3 of the perpendiculars from <i>P</i> to A_2A_3, A_3A_1, A_1A_2 lie on a line. Prove that this line bisects the segment <i>PH</i> .		
6	Let a, b, c, d are integers such that $(a, b) = (c, d) = 1$ and $ad - bc = k > 0$. Prove that there are exactly k pairs (x_1, x_2) of rational numbers with $0 \le x_1, x_2 < 1$ for which both ax_1+bx_2, cx_1+dx_2 are integers.		

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱