

AoPS Community

1996 Taiwan National Olympiad

Taiwan National Olympiad 1996

www.artofproblemsolving.com/community/c5362 by N.T.TUAN

Day 1	
-------	--

1	Suppose that a, b, c are real numbers in $(0, \frac{\pi}{2})$ such that $a + b + c = \frac{\pi}{4}$ and $\tan a = \frac{1}{x}, \tan b = \frac{1}{y}, \tan c = \frac{1}{z}$, where x, y, z are positive integer numbers. Find x, y, z .
2	Let $0 < a \le 1$ be a real number and let $a \le a_i \le \frac{1}{a_i} \forall i = \overline{1,1996}$ are real numbers. Prove that for any nonnegative real numbers $k_i (i = 1, 2,, 1996)$ such that $\sum_{i=1}^{1996} k_i = 1$ we have $(\sum_{i=1}^{1996} k_i a_i)(\sum_{i=1}^{1996} \frac{k_i}{a_i}) \le (a + \frac{1}{a})^2$.
3	Let be given points A, B on a circle and let P be a variable point on that circle. Let point M be determined by P as the point that is either on segment PA with $AM = MP + PB$ or on segment PB with $AP + MP = PB$. Find the locus of points M .
Day 2	
4	Show that for any real numbers a_{1} and a_{2} not all the reats of the equation a_{2} m^{85} i.e. m^{84}
-	$a_{85}x^{-4} + a_{84}x^{-4} + a_{8$
5	Show that for any real numbers $a_3, a_4,, a_{85}$, not all the foots of the equation $a_{85}x^{-4} + a_{84}x^{-4} + + a_3x^3 + 3x^2 + 2x + 1 = 0$ are real. Dertemine integers $a_1, a_2,, a_{99} = a_0$ satisfying $ a_k - a_{k-1} \ge 1996$ for all $k = 1, 2,, 99$, such that $m = \max_{1 \le k \le 99} a_k - a_{k-1} $ is minimum possible, and find the minimum value m^* of m .
5	Show that for any real numbers $a_3, a_4,, a_{85}$, not all the foots of the equation $a_{85}x^{-4} + a_{84}x^{-4} + + a_3x^3 + 3x^2 + 2x + 1 = 0$ are real. Dertemine integers $a_1, a_2,, a_{99} = a_0$ satisfying $ a_k - a_{k-1} \ge 1996$ for all $k = 1, 2,, 99$, such that $m = \max_{1 \le k \le 99} a_k - a_{k-1} $ is minimum possible, and find the minimum value m^* of m . Let $q_0, q_1,$ be a sequence of integers such that
5	Show that for any real numbers $a_3, a_4,, a_{85}$, not all the foots of the equation $a_{85}x^{-4} + a_{84}x^{-4} + + a_3x^3 + 3x^2 + 2x + 1 = 0$ are real. Dertemine integers $a_1, a_2,, a_{99} = a_0$ satisfying $ a_k - a_{k-1} \ge 1996$ for all $k = 1, 2,, 99$, such that $m = \max_{1 \le k \le 99} a_k - a_{k-1} $ is minimum possible, and find the minimum value m^* of m . Let $q_0, q_1,$ be a sequence of integers such that a) for any $m > n$ we have $m - n \mid q_m - q_n$, and b) $ q_n \le n^{10}, \forall n \ge 0$.