AoPS Community

Taiwan National Olympiad 1996
www.artofproblemsolving.com/community/c5362
by N.T.TUAN

Day 1

1 Suppose that a, b, c are real numbers in ($0, \frac{\pi}{2}$) such that $a+b+c=\frac{\pi}{4}$ and $\tan a=\frac{1}{x}$, $\tan b=$ $\frac{1}{y}, \tan c=\frac{1}{z}$, where x, y, z are positive integer numbers. Find x, y, z.

2 Let $0<a \leq 1$ be a real number and let $a \leq a_{i} \leq \frac{1}{a_{i}} \forall i=\overline{1,1996}$ are real numbers. Prove that for any nonnegative real numbers $k_{i}(i=1,2, \ldots, 1996)$ such that $\sum_{i=1}^{1996} k_{i}=1$ we have $\left(\sum_{i=1}^{1996} k_{i} a_{i}\right)\left(\sum_{i=1}^{1996} \frac{k_{i}}{a_{i}}\right) \leq\left(a+\frac{1}{a}\right)^{2}$.

3 Let be given points A, B on a circle and let P be a variable point on that circle. Let point M be determined by P as the point that is either on segment $P A$ with $A M=M P+P B$ or on segment $P B$ with $A P+M P=P B$. Find the locus of points M.

Day 2

4 Show that for any real numbers $a_{3}, a_{4}, \ldots, a_{85}$, not all the roots of the equation $a_{85} x^{85}+a_{84} x^{84}+$ $\ldots+a_{3} x^{3}+3 x^{2}+2 x+1=0$ are real.

5 Dertemine integers $a_{1}, a_{2}, \ldots, a_{99}=a_{0}$ satisfying $\left|a_{k}-a_{k-1}\right| \geq 1996$ for all $k=1,2, \ldots, 99$, such that $m=\max _{1 \leq k \leq 99}\left|a_{k}-a_{k-1}\right|$ is minimum possible, and find the minimum value m^{*} of m.

6 Let q_{0}, q_{1}, \ldots be a sequence of integers such that
a) for any $m>n$ we have $m-n \mid q_{m}-q_{n}$, and
b) $\left|q_{n}\right| \leq n^{10}, \forall n \geq 0$.

Prove there exists a polynomial Q such that $q_{n}=Q(n), \forall n \geq 0$.

