Art of Problem Solving

AoPS Community

Taiwan National Olympiad 1997

www.artofproblemsolving.com/community/c5363
by N.T.TUAN

Day 1

1 Let a be rational and b, c, d are real numbers, and let $f: \mathbb{R} \rightarrow[-1.1]$ be a function satisfying $f(x+a+b)-f(x+b)=c[x+2 a+[x]-2[x+a]-[b]]+d$ for all x. Show that f is periodic.

2 Given a line segment $A B$ in the plane, find all possible points C such that in the triangle $A B C$, the altitude from A and the median from B have the same length.

3 Let $n>2$ be an integer. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers such that $k_{i}=\frac{a_{i-1}+a_{i+1}}{a_{i}}$ is a positive integer for all $i\left(\right.$ Here $\left.a_{0}=a_{n}, a_{n+1}=a_{1}\right)$. Prove that $2 n \leq a_{1}+a_{2}+\ldots+a_{n} \leq 3 n$.

Day 2

4 Let $k=2^{2^{n}}+1$ for some $n \in \mathbb{N}$. Show that k is prime iff $k \left\lvert\, 3^{\frac{k-1}{2}}+1\right.$.
5 Let $A B C D$ is a tetrahedron. Show that
a)If $A B=C D, A C=D B, A D=B C$ then triangles $A B C, A B D, A C D, B C D$ are acute.
b)If the triangles $A B C, A B D, A C D, B C D$ have the same area, then $A B=C D, A C=D B, A D=$ $B C$.

6 Show that every number of the form $2^{p} 3^{q}$, where p, q are nonnegative integers, divides some number of the form $a_{2 k} 10^{2 k}+a_{2 k-2} 10^{2 k-2}+\ldots+a_{2} 10^{2}+a_{0}$, where $a_{2 i} \in\{1,2, \ldots, 9\}$

Day 3

$7 \quad$ Find all positive integers k for which there exists a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ satisfying $f(1997)=$ 1998 and $f(a b)=f(a)+f(b)+k f(\operatorname{gcd}(a, b)) \forall a, b$.

8 Let O be the circumcenter and R be the circumradius of an acute triangle $A B C$. Let $A O$ meet the circumcircle of $O B C$ again at $D, B O$ meet the circumcircle of $O C A$ again at E, and $C O$ meet the circumcircle of $O A B$ again at F. Show that $O D . O E . O F \geq 8 R^{3}$.
$9 \quad$ For $n \geq k \geq 3$, let $X=\{1,2, \ldots, n\}$ and let F_{k} a the family of k-element subsets of X, any two of which have at most $k-2$ elements in common. Show that there exists a subset M_{k} of X with at least $\left[\log _{2} n\right]+1$ elements containing no subset in F_{k}.

