

AoPS Community

1998 Taiwan National Olympiad

Taiwan National Olympiad 1998

www.artofproblemsolving.com/community/c5364 by N.T.TUAN, elegant

Day 1

- 1 Let m, n are positive integers. a)Prove that $(m, n) = 2 \sum_{k=0}^{m-1} [\frac{kn}{m}] + m + n - mn$. b)If $m, n \ge 2$, prove that $\sum_{k=0}^{m-1} [\frac{kn}{m}] = \sum_{k=0}^{n-1} [\frac{km}{n}]$.
- **2** Does there exist a solution (x, y, z, u, v) in integers greater than 1998 to the equation $x^2 + y^2 + z^2 + u^2 + v^2 = xyzuv 65$?
- **3** Let m, n be positive integers, and let F be a family of m-element subsets of $\{1, 2, ..., n\}$ satisfying $A \cap B \neq \emptyset$ for all $A, B \in F$. Determine the maximum possible number of elements in F.

Day 2

- 4 Let *I* be the incenter of triangle *ABC*. Lines *AI*, *BI*, *CI* meet the sides of $\triangle ABC$ at *D*, *E*, *F* respectively. Let *X*, *Y*, *Z* be arbitrary points on segments *EF*, *FD*, *DE*, respectively. Prove that $d(X, AB) + d(Y, BC) + d(Z, CA) \le XY + YZ + ZX$, where $d(X, \ell)$ denotes the distance from a point *X* to a line ℓ .
- **5** For a positive integer *n*, let $\omega(n)$ denote the number of positive prime divisors of *n*. Find the smallest positive tinteger *k* such that $2^{\omega(n)} \le k \sqrt[4]{n} \forall n \in \mathbb{N}$.
- **6** In a group of $n \ge 4$ persons, every three who know each other have a common signal. Assume that these signals are not repeated and that there are $m \ge 1$ signals in total. For any set of four persons in which there are three having a common signal, the fourth person has a common signal with at most one of them. Show that there three persons who have a common signal, such that the number of persons having no signal with anyone of them does not exceed $[n + 3 \frac{18m}{n}]$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.