Art of Problem Solving

AoPS Community

Taiwan National Olympiad 1998

www.artofproblemsolving.com/community/c5364
by N.T.TUAN, elegant

Day 1

1 Let m, n are positive integers.
a)Prove that $(m, n)=2 \sum_{k=0}^{m-1}\left[\frac{k n}{m}\right]+m+n-m n$.
b)If $m, n \geq 2$, prove that $\sum_{k=0}^{m-1}\left[\frac{k n}{m}\right]=\sum_{k=0}^{n-1}\left[\frac{k m}{n}\right]$.

2 Does there exist a solution (x, y, z, u, v) in integers greater than 1998 to the equation $x^{2}+y^{2}+$ $z^{2}+u^{2}+v^{2}=x y z u v-65 ?$

3 Let m, n be positive integers, and let F be a family of m-element subsets of $\{1,2, \ldots, n\}$ satisfying $A \cap B \neq \emptyset$ for all $A, B \in F$. Determine the maximum possible number of elements in F.

Day 2

4 Let I be the incenter of triangle $A B C$. Lines $A I, B I, C I$ meet the sides of $\triangle A B C$ at D, E, F respectively. Let X, Y, Z be arbitrary points on segments $E F, F D, D E$, respectively. Prove that $d(X, A B)+d(Y, B C)+d(Z, C A) \leq X Y+Y Z+Z X$, where $d(X, \ell)$ denotes the distance from a point X to a line ℓ.
$5 \quad$ For a positive integer n, let $\omega(n)$ denote the number of positive prime divisors of n. Find the smallest positive tinteger k such that $2^{\omega(n)} \leq k \sqrt[4]{n} \forall n \in \mathbb{N}$.

6 In a group of $n \geq 4$ persons, every three who know each other have a common signal. Assume that these signals are not repeatad and that there are $m \geq 1$ signals in total. For any set of four persons in which there are three having a common signal, the fourth person has a common signal with at most one of them. Show that there three persons who have a common signal, such that the number of persons having no signal with anyone of them does not exceed $\left[n+3-\frac{18 m}{n}\right]$.

