Art of Problem Solving

AoPS Community

Taiwan National Olympiad 2000

www.artofproblemsolving.com/community/c5366
by WakeUp, Akashnil

Day 1 April 7th
1 Find all pairs (x, y) of positive integers such that $y^{x^{2}}=x^{y+2}$.
2 Let $A B C$ be a triangle in which $B C<A C$. Let M be the mid-point of $A B, A P$ be the altitude from A on $B C$, and $B Q$ be the altitude from B on to $A C$. Suppose that $Q P$ produced meets $A B$ (extended) at T. If H is the orthocenter of $A B C$, prove that $T H$ is perpendicular to $C M$.

3 Consider the set $S=\{1,2, \ldots, 100\}$ and the family $\mathcal{P}=\{T \subset S| | T \mid=49\}$. Each $T \in \mathcal{P}$ is labelled by an arbitrary number from S. Prove that there exists a subset M of S with $|M|=50$ such that for each $x \in M$, the set $M \backslash\{x\}$ is not labelled by x.

Day 2 April 29th

1 Suppose that for some $m, n \in \mathbb{N}$ we have $\varphi\left(5^{m}-1\right)=5^{n}-1$, where φ denotes the Euler function. Show that $(m, n)>1$.

2 Let n be a positive integer and $A=\{1,2, \ldots, n\}$. A subset of A is said to be connected if it consists of one element or several consecutive elements. Determine the maximum k for which there exist k distinct subsets of A such that the intersection of any two of them is connected.

3 Define a function $f: \mathbb{N} \rightarrow \mathbb{N}_{0}$ by $f(1)=0$ and

$$
f(n)=\max _{j}\{f(j)+f(n-j)+j\} \quad \forall n \geq 2
$$

Determine $f(2000)$.

