AoPS Community

2002 Taiwan National Olympiad

Taiwan National Olympiad 2002
www.artofproblemsolving.com/community/c5367
by N.T.TUAN

Day 1

1 Find all natural numbers n and nonnegative integers $x_{1}, x_{2}, \ldots, x_{n}$ such that $\sum_{i=1}^{n} x_{i}^{2}=1+$ $\frac{4}{4 n+1}\left(\sum_{i=1}^{n} x_{i}\right)^{2}$.

2 A lattice point X in the plane is said to be visible from the origin O if the line segment $O X$ does not contain any other lattice points. Show that for any positive integer n, there is square $A B C D$ of area n^{2} such that none of the lattice points inside the square is visible from the origin.

3 Suppose $x, y,, a, b, c, d, e, f$ are real numbers satifying
i) $\max (a, 0)+\max (b, 0)<x+a y+b z<1+\min (a, 0)+\min (b, 0)$, and ii) $\max (c, 0)+\max (d, 0)<c x+y+d z<1+\min (c, 0)+\min (d, 0)$, and iii) $\max (e, 0)+\max (f, 0)<e x+f y+z<1+\min (e, 0)+\min (f, 0)$.

Prove that $0<x, y, z<1$.

Day 2

$4 \quad$ Let $0<x_{1}, x_{2}, x_{3}, x_{4} \leq \frac{1}{2}$ are real numbers. Prove that $\frac{x_{1} x_{2} x_{3} x_{4}}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)\left(1-x_{4}\right)} \leq \frac{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}}{\left(1-x_{1}\right)^{4}+\left(1-x_{2}\right)^{4}+\left(1-x_{3}\right)^{4}+(1-2}$

5 Suppose that the real numbers $a_{1}, a_{2}, \ldots, a_{2002}$ satisfying $\frac{a_{1}}{2}+\frac{a_{2}}{3}+\ldots+\frac{a_{2002}}{2003}=\frac{4}{3} \frac{a_{1}}{3}+\frac{a_{2}}{4}+\ldots+$ $\frac{a_{2002}}{2004}=\frac{4}{5} \ldots \frac{a_{1}}{2003}+\frac{a_{2}}{2004}+\ldots+\frac{a_{2002}}{4004}=\frac{4}{4005}$
Evaluate the sum $\frac{a_{1}}{3}+\frac{a_{2}}{5}+\ldots+\frac{a_{2002}}{4005}$.
6 Let A, B, C be fixed points in the plane, and D be a variable point on the circle $A B C$, distinct from A, B, C. Let $I_{A}, I_{B}, I_{C}, I_{D}$ be the Simson lines of A, B, C, D with respect to triangles $B C D, A C D, A B D, A B C$ respectively. Find the locus of the intersection points of the four lines $I_{A}, I_{B}, I_{C}, I_{D}$ when point D varies.

