Art of Problem Solving

## AoPS Community

Taiwan National Olympiad 2005
www.artofproblemsolving.com/community/c5368
by Maverick, k2c901_1

- Written Examination


## Day 1

1 Let $a, b, c$ be three positive real numbers such that $a b c=1$. Prove that:

$$
1+\frac{3}{a+b+c} \geq \frac{6}{a b+b c+c a} .
$$

2 Ten test papers are to be prepared for the National Olympiad. Each paper has 4 problems, and no two papers have more than 1 problem in common. At least how many problems are needed?

3 Let the major axis of an ellipse be $A B$, let $O$ be its center, and let $F$ be one of its foci. $P$ is a point on the ellipse, and $C D$ a chord through $O$, such that $C D$ is parallel to the tangent of the ellipse at $P$. $P F$ and $C D$ intersect at $Q$. Compare the lengths of $P Q$ and $O A$.

## Day 2

$1 \quad P, Q$ are two fixed points on a circle centered at $O$, and $M$ is an interior point of the circle that differs from $O$. $M, P, Q, O$ are concyclic. Prove that the bisector of $\angle P M Q$ is perpendicular to line $O M$.
$2 x, y, z, a, b, c$ are positive integers that satisfy $x y \equiv a(\bmod z), y z \equiv b(\bmod x), z x \equiv c(\bmod y)$. Prove that $\min \{x, y, z\} \leq a b+b c+c a$.
$3 a_{1}, a_{2}, \ldots, a_{95}$ are positive reals. Show that $\sum_{k=1}^{95} a_{k} \leq 94+\prod_{k=1}^{95} \max \left\{1, a_{k}\right\}$

- Oral Examination

1 Let $A$ be the sum of the first $2 k+1$ positive odd integers, and let $B$ be the sum of the first $2 k+1$ positive even integers. Show that $A+B$ is a multiple of $4 k+3$.

2 In triangle $A B C, D$ is the midpoint of side $A B$. $E$ and $F$ are points arbitrarily chosen on segments $A C$ and $B C$, respectively. Show that $[D E F]<[A D E]+[B D F]$.

- Additional Examination


## Day 1

1 Find all integer solutions $(x, y)$ to the equation $\frac{x+y}{x^{2}-x y+y^{2}}=\frac{3}{7}$.
2 Given a line segment $A B=7, C$ is constructed on $A B$ so that $A C=5$. Two equilateral triangles are constructed on the same side of $A B$ with $A C$ and $B C$ as a side. Find the length of the segment connecting their two circumcenters.
$3 f(x)=x^{3}-6 x^{2}+17 x$. If $f(a)=16, f(b)=20$, find $a+b$.

## Day 2

1 There are 94 safes and 94 keys. Each key can open only one safe, and each safe can be opened by only one key. We place randomly one key into each safe. 92 safes are then randomly chosen, and then locked. What is the probability that we can open all the safes with the two keys in the two remaining safes?
(Once a safe is opened, the key inside the safe can be used to open another safe.)
$2 \quad$ Find all reals $x$ satisfying $0 \leq x \leq 5$ and $\left\lfloor x^{2}-2 x\right\rfloor=\lfloor x\rfloor^{2}-2\lfloor x\rfloor$.
3 If positive integers $p, q, r$ are such that the quadratic equation $p x^{2}-q x+r=0$ has two distinct real roots in the open interval $(0,1)$, find the minimum value of $p$.

