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– Day 1
1 Let H be an orthocenter of an acute triangle ABC. Prove that midpoints of AB and CH andintersection point of angle bisectors of ∠CAH and ∠CBH lie on the same line.
2 If a1, a2 and a3 are nonnegative real numbers for which a1+a2+a3 = 1, then prove the inequality
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3 Let n be a positive integer such that n ≥ 2. Let x1, x2, ..., xn be n distinct positive integersand Si sum of all numbers between them except xi for i = 1, 2, ..., n. Let f(x1, x2, ..., xn) =
GCD(x1,S1)+GCD(x2,S2)+...+GCD(xn,Sn)

x1+x2+...+xn
.Determine maximal value of f(x1, x2, ..., xn), while (x1, x2, ..., xn) is an element of set whichconsists from all n-tuples of distinct positive integers.

– Day 2
4 On the line which contains diameter PQ of circle k(S, r), point A is chosen outside the circlesuch that tangent t from point A touches the circle in point T . Tangents on circle k in points

P and Q are p and q, respectively. If PT ∩ q = N and QT ∩ p = M , prove that points A, M and
N are collinear.

5 If for an arbitrary permutation (a1, a2, ..., an) of set 1, 2, ..., n holds ak
2

ak+1
≤ k + 2,

k = 1, 2, ..., n− 1, prove that ak = k for k = 1, 2, ..., n

6 Let a, b and c are integers such that a
b +

b
c +

c
a = 3. Prove that abc is a perfect cube of an integer.
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