

AoPS Community

2005 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 2005

www.artofproblemsolving.com/community/c537030 by gobathegreat

- Day 1
- **1** Let *H* be an orthocenter of an acute triangle *ABC*. Prove that midpoints of *AB* and *CH* and intersection point of angle bisectors of $\angle CAH$ and $\angle CBH$ lie on the same line.
- 2 If a_1, a_2 and a_3 are nonnegative real numbers for which $a_1+a_2+a_3 = 1$, then prove the inequality $a_1\sqrt{a_2} + a_2\sqrt{a_3} + a_3\sqrt{a_1} \le \frac{1}{\sqrt{3}}$
- **3** Let *n* be a positive integer such that $n \ge 2$. Let $x_1, x_2, ..., x_n$ be *n* distinct positive integers and S_i sum of all numbers between them except x_i for i = 1, 2, ..., n. Let $f(x_1, x_2, ..., x_n) = \frac{GCD(x_1,S_1)+GCD(x_2,S_2)+...+GCD(x_n,S_n)}{x_1+x_2+...+x_n}$. Determine maximal value of $f(x_1, x_2, ..., x_n)$, while $(x_1, x_2, ..., x_n)$ is an element of set which

consists from all *n*-tuples of distinct positive integers.

- Day 2
- **4** On the line which contains diameter PQ of circle k(S, r), point A is chosen outside the circle such that tangent t from point A touches the circle in point T. Tangents on circle k in points P and Q are p and q, respectively. If $PT \cap q = N$ and $QT \cap p = M$, prove that points A, M and N are collinear.
- 5 If for an arbitrary permutation $(a_1, a_2, ..., a_n)$ of set 1, 2, ..., n holds $\frac{a_k^2}{a_{k+1}} \le k+2$, k = 1, 2, ..., n 1, prove that $a_k = k$ for k = 1, 2, ..., n
- 6 Let a, b and c are integers such that $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 3$. Prove that abc is a perfect cube of an integer.

Act of Problem Solving is an ACS WASC Accredited School.