Art of Problem Solving

AoPS Community

2005 Bosnia and Herzegovina Team Selection Test

Bosnia and Herzegovina Team Selection Test 2005

www.artofproblemsolving.com/community/c537030
by gobathegreat

- Day 1

1 Let H be an orthocenter of an acute triangle $A B C$. Prove that midpoints of $A B$ and $C H$ and intersection point of angle bisectors of $\angle C A H$ and $\angle C B H$ lie on the same line.

2 If a_{1}, a_{2} and a_{3} are nonnegative real numbers for which $a_{1}+a_{2}+a_{3}=1$, then prove the inequality $a_{1} \sqrt{a_{2}}+a_{2} \sqrt{a_{3}}+a_{3} \sqrt{a_{1}} \leq \frac{1}{\sqrt{3}}$

3 Let n be a positive integer such that $n \geq 2$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be n distinct positive integers and S_{i} sum of all numbers between them except x_{i} for $i=1,2, \ldots, n$. Let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\frac{G C D\left(x_{1}, S_{1}\right)+G C D\left(x_{2}, S_{2}\right)+\ldots+G C D\left(x_{n}, S_{n}\right)}{x_{1}+x_{2}+\ldots+x_{n}}$.
Determine maximal value of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, while $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an element of set which consists from all n-tuples of distinct positive integers.

- Day 2

4 On the line which contains diameter $P Q$ of circle $k(S, r)$, point A is chosen outside the circle such that tangent t from point A touches the circle in point T. Tangents on circle k in points P and Q are p and q, respectively. If $P T \cap q=N$ and $Q T \cap p=M$, prove that points A, M and N are collinear.

5 If for an arbitrary permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of set $1,2, \ldots, n$ holds $\frac{a_{k}{ }^{2}}{a_{k+1}} \leq k+2$, $k=1,2, \ldots, n-1$, prove that $a_{k}=k$ for $k=1,2, \ldots, n$

6 Let a, b and c are integers such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3$. Prove that $a b c$ is a perfect cube of an integer.

