AoPS Community

Team Selection Test For CSMO 2006

www.artofproblemsolving.com/community/c5377
by carlosbr

1 Find all the pairs of positive numbers such that the last digit of their sum is 3 , their difference is a primer number and their product is a perfect square.

2 Let $A A_{1}$ and $B B_{1}$ be the altitudes of an acute-angled, non-isosceles triangle $A B C$. Also, let A_{0} and B_{0} be the midpoints of its sides $B C$ and $C A$, respectively. The line $A_{1} B_{1}$ intersects the line $A_{0} B_{0}$ at a point C^{\prime}. Prove that the line $C C^{\prime}$ is perpendicular to the Euler line of the triangle $A B C$ (this is the line that joins the orthocenter and the circumcenter of the triangle $A B C$).

3 The set $M=\{1 ; 2 ; 3 ; \ldots ; 29 ; 30\}$ is divided in k subsets such that if $a+b=n^{2},(a, b \in M, a \neq b, n$ is an integer number), then a and b belong different subsets. Determine the minimum value of k.
$4 \quad$ All the squares of a board of $(n+1) \times(n-1)$ squares are painted with three colors such that, for any two different columns and any two different rows, the 4 squares in their intersections they don't have all the same color. Find the greatest possible value of n.

