AoPS Community

Lithuania Team Selection Test 2006

www.artofproblemsolving.com/community/c5378
by Xixas

1 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers, whose sum is 1 . Prove that

$$
\frac{a_{1}^{2}}{a_{1}+a_{2}}+\frac{a_{2}^{2}}{a_{2}+a_{3}}+\cdots+\frac{a_{n-1}^{2}}{a_{n-1}+a_{n}}+\frac{a_{n}^{2}}{a_{n}+a_{1}} \geq \frac{1}{2}
$$

2 Solve in integers x and y the equation $x^{3}-y^{3}=2 x y+8$.
3 Inside a convex quadrilateral $A B C D$ there is a point P such that the triangles $P A B, P B C, P C D, P D A$ have equal areas. Prove that the area of $A B C D$ is bisected by one of the diagonals.

4 Prove that in every polygon there is a diagonal that cuts off a triangle and lies within the polygon.

5 Does the bellow depicted figure fit into a square 5×5.

