

AoPS Community

Iran Team Selection Test 2004

www.artofproblemsolving.com/community/c5380 by Omid Hatami

1	Suppose that	n is a	prime numb	er. Prov	e that for	each k.	there exists	an n such that:
•	ouppool mat	p io α	printic marine		c that for	cuon 10,	there exists	an no odon that.

$$\left(\frac{n}{p}\right) = \left(\frac{n+k}{p}\right)$$

- **2** Suppose that *p* is a prime number. Prove that the equation $x^2 py^2 = -1$ has a solution if and only if $p \equiv 1 \pmod{4}$.
- **3** Suppose that ABCD is a convex quadrilateral. Let $F = AB \cap CD$, $E = AD \cap BC$ and $T = AC \cap BD$. Suppose that A, B, T, E lie on a circle which intersects with EF at P. Prove that if M is midpoint of AB, then $\angle APM = \angle BPT$.
- 4 Let M, M' be two conjugates point in triangle ABC (in the sense that $\angle MAB = \angle M'AC, ...$). Let P, Q, R, P', Q', R' be foots of perpendiculars from M and M' to BC, CA, AB. Let $E = QR \cap Q'R'$, $F = RP \cap R'P'$ and $G = PQ \cap P'Q'$. Prove that the lines AG, BF, CE are parallel.
- This problem is generalization of this one (http://www.mathlinks.ro/Forum/viewtopic.php? t=5918).
 Suppose G is a graph and S ⊂ V(G). Suppose we have arbitrarily assign real numbers to each element of S. Prove that we can assign numbers to each vertex in G\S that for each v ∈ G\S

number assigned to v is average of its neighbors.

6 p is a polynomial with integer coefficients and for every natural n we have p(n) > n. x_k is a sequence that: $x_1 = 1, x_{i+1} = p(x_i)$ for every N one of x_i is divisible by N. Prove that p(x) = x + 1

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.