AoPS Community

Iran Team Selection Test 2004

www.artofproblemsolving.com/community/c5380
by Omid Hatami

1 Suppose that p is a prime number. Prove that for each k, there exists an n such that:

$$
\left(\frac{n}{p}\right)=\left(\frac{n+k}{p}\right)
$$

2 Suppose that p is a prime number. Prove that the equation $x^{2}-p y^{2}=-1$ has a solution if and only if $p \equiv 1(\bmod 4)$.

3 Suppose that $A B C D$ is a convex quadrilateral. Let $F=A B \cap C D, E=A D \cap B C$ and $T=$ $A C \cap B D$. Suppose that A, B, T, E lie on a circle which intersects with $E F$ at P. Prove that if M is midpoint of $A B$, then $\angle A P M=\angle B P T$.

4 Let M, M^{\prime} be two conjugates point in triangle $A B C$ (in the sense that $\angle M A B=\angle M^{\prime} A C, \ldots$). Let $P, Q, R, P^{\prime}, Q^{\prime}, R^{\prime}$ be foots of perpendiculars from M and M^{\prime} to $B C, C A, A B$. Let $E=Q R \cap$ $Q^{\prime} R^{\prime}, F=R P \cap R^{\prime} P^{\prime}$ and $G=P Q \cap P^{\prime} Q^{\prime}$. Prove that the lines $A G, B F, C E$ are parallel.

5 This problem is generalization of this one (http://www.mathlinks.ro/Forum/viewtopic.php? $\mathrm{t}=5918$).
Suppose G is a graph and $S \subset V(G)$. Suppose we have arbitrarily assign real numbers to each element of S. Prove that we can assign numbers to each vertex in $G \backslash S$ that for each $v \in G \backslash S$ number assigned to v is average of its neighbors.
$6 \quad p$ is a polynomial with integer coefficients and for every natural n we have $p(n)>n . x_{k}$ is a sequence that: $x_{1}=1, x_{i+1}=p\left(x_{i}\right)$ for every N one of x_{i} is divisible by N. Prove that $p(x)=$ $x+1$

