

AoPS Community

Iran Team Selection Test 2007

www.artofproblemsolving.com/community/c5383 by Omid Hatami, pohoatza

Day 1

1 In triangle *ABC*, *M* is midpoint of *AC*, and *D* is a point on *BC* such that DB = DM. We know that $2BC^2 - AC^2 = AB.AC$. Prove that

$$BD.DC = \frac{AC^2.AB}{2(AB + AC)}$$

2 Let *A* be the largest subset of $\{1, ..., n\}$ such that for each $x \in A$, *x* divides at most one other element in *A*. Prove that

$$\frac{2n}{3} \le |A| \le \left\lceil \frac{3n}{4} \right\rceil.$$

3 Find all solutions of the following functional equation:

$$f(x^2 + y + f(y)) = 2y + f(x)^2.$$

Day 2	
1	In an isosceles right-angled triangle shaped billiards table , a ball starts moving from one of the vertices adjacent to hypotenuse. When it reaches to one side then it will reflect its path. Prove that if we reach to a vertex then it is not the vertex at initial position <i>By Sam Nariman</i>
2	Find all monic polynomials $f(x)$ in $\mathbb{Z}[x]$ such that $f(\mathbb{Z})$ is closed under multiplication. By Mohsen Jamali
3	Let ω be incircle of <i>ABC</i> . <i>P</i> and <i>Q</i> are on <i>AB</i> and <i>AC</i> , such that <i>PQ</i> is parallel to <i>BC</i> and is tangent to ω . <i>AB</i> , <i>AC</i> touch ω at <i>F</i> , <i>E</i> . Prove that if <i>M</i> is midpoint of <i>PQ</i> , and <i>T</i> is intersection point of <i>EF</i> and <i>BC</i> , then <i>TM</i> is tangent to ω . <i>By Ali Khezeli</i>

Day 3

AoPS Community

- 1 Does there exist a a sequence $a_0, a_1, a_2, ...$ in \mathbb{N} , such that for each $i \neq j, (a_i, a_j) = 1$, and for each n, the polynomial $\sum_{i=0}^{n} a_i x^i$ is irreducible in $\mathbb{Z}[x]$? By Omid Hatami
- 2 Suppose *n* lines in plane are such that no two are parallel and no three are concurrent. For each two lines their angle is a real number in $[0, \frac{\pi}{2}]$. Find the largest value of the sum of the $\binom{n}{2}$ angles between line. By Aliakbar Daemi
- **3** *O* is a point inside triangle ABC such that OA = OB + OC. Suppose B', C' be midpoints of arcs AOC and AOB. Prove that circumcircles COC' and BOB' are tangent to each other.

Day 4

1 Find all polynomials of degree 3, such that for each $x, y \ge 0$:

$$p(x+y) \ge p(x) + p(y)$$

2 Triangle *ABC* is isosceles (*AB* = *AC*). From *A*, we draw a line ℓ parallel to *BC*. *P*, *Q* are on perpendicular bisectors of *AB*, *AC* such that $PQ \perp BC$. *M*, *N* are points on ℓ such that angles $\angle APM$ and $\angle AQN$ are $\frac{\pi}{2}$. Prove that

$$\frac{1}{AM} + \frac{1}{AN} \leq \frac{2}{AB}$$

3 Let P be a point in a square whose side are mirror. A ray of light comes from P and with slope α. We know that this ray of light never arrives to a vertex. We make an infinite sequence of 0, 1. After each contact of light ray with a horizontal side, we put 0, and after each contact with a vertical side, we put 1. For each n ≥ 1, let B_n be set of all blocks of length n, in this sequence.
a) Prove that B_n does not depend on location of P.
b) Prove that if ^α/_π is irrational, then |B_n| = n + 1.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.