Art of Problem Solving

AoPS Community

Iran Team Selection Test 2007

www.artofproblemsolving.com/community/c5383
by Omid Hatami, pohoatza

Day 1

1 In triangle $A B C, M$ is midpoint of $A C$, and D is a point on $B C$ such that $D B=D M$. We know that $2 B C^{2}-A C^{2}=A B . A C$. Prove that

$$
B D \cdot D C=\frac{A C^{2} \cdot A B}{2(A B+A C)}
$$

2 Let A be the largest subset of $\{1, \ldots, n\}$ such that for each $x \in A, x$ divides at most one other element in A. Prove that

$$
\frac{2 n}{3} \leq|A| \leq\left\lceil\frac{3 n}{4}\right\rceil
$$

3 Find all solutions of the following functional equation:

$$
f\left(x^{2}+y+f(y)\right)=2 y+f(x)^{2} .
$$

Day 2

1 In an isosceles right-angled triangle shaped billiards table, a ball starts moving from one of the vertices adjacent to hypotenuse. When it reaches to one side then it will reflect its path. Prove that if we reach to a vertex then it is not the vertex at initial position By Sam Nariman

2 Find all monic polynomials $f(x)$ in $\mathbb{Z}[x]$ such that $f(\mathbb{Z})$ is closed under multiplication. By Mohsen Jamali

3 Let ω be incircle of $A B C . P$ and Q are on $A B$ and $A C$, such that $P Q$ is parallel to $B C$ and is tangent to ω. $A B, A C$ touch ω at F, E. Prove that if M is midpoint of $P Q$, and T is intersection point of $E F$ and $B C$, then $T M$ is tangent to ω.
By Ali Khezeli

Day 3

1 Does there exist a a sequence $a_{0}, a_{1}, a_{2}, \ldots$ in \mathbb{N}, such that for each $i \neq j,\left(a_{i}, a_{j}\right)=1$, and for each n, the polynomial $\sum_{i=0}^{n} a_{i} x^{i}$ is irreducible in $\mathbb{Z}[x]$?
By Omid Hatami
2 Suppose n lines in plane are such that no two are parallel and no three are concurrent. For each two lines their angle is a real number in $\left[0, \frac{\pi}{2}\right]$. Find the largest value of the sum of the $\binom{n}{2}$ angles between line.
By Aliakbar Daemi
$3 \quad O$ is a point inside triangle $A B C$ such that $O A=O B+O C$. Suppose B^{\prime}, C^{\prime} be midpoints of arcs AOC and $A O B$. Prove that circumcircles $C O C^{\prime}$ and $B O B^{\prime}$ are tangent to each other.

Day 4

1 Find all polynomials of degree 3, such that for each $x, y \geq 0$:

$$
p(x+y) \geq p(x)+p(y)
$$

2 Triangle $A B C$ is isosceles $(A B=A C)$. From A, we draw a line ℓ parallel to $B C . P, Q$ are on perpendicular bisectors of $A B, A C$ such that $P Q \perp B C . M, N$ are points on ℓ such that angles $\angle A P M$ and $\angle A Q N$ are $\frac{\pi}{2}$. Prove that

$$
\frac{1}{A M}+\frac{1}{A N} \leq \frac{2}{A B}
$$

$3 \quad$ Let P be a point in a square whose side are mirror. A ray of light comes from P and with slope α. We know that this ray of light never arrives to a vertex. We make an infinite sequence of 0,1 . After each contact of light ray with a horizontal side, we put 0 , and after each contact with a vertical side, we put 1 . For each $n \geq 1$, let B_{n} be set of all blocks of length n, in this sequence.
a) Prove that B_{n} does not depend on location of P.
b) Prove that if $\frac{\alpha}{\pi}$ is irrational, then $\left|B_{n}\right|=n+1$.

