Art of Problem Solving

AoPS Community

Iran Team Selection Test 2008

www.artofproblemsolving.com/community/c5384
by Omid Hatami

Day 1

1 Find all functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that for each $x, y \in \mathbb{R}$:

$$
f(x f(y))+y+f(x)=f(x+f(y))+y f(x)
$$

2 Suppose that I is incenter of triangle $A B C$ and l^{\prime} is a line tangent to the incircle. Let l be another line such that intersects $A B, A C, B C$ respectively at $C^{\prime}, B^{\prime}, A^{\prime}$. We draw a tangent from A^{\prime} to the incircle other than $B C$, and this line intersects with l^{\prime} at $A_{1} . B_{1}, C_{1}$ are similarly defined. Prove that $A A_{1}, B B_{1}, C C_{1}$ are concurrent.

3 Suppose that T is a tree with k edges. Prove that the k-dimensional cube can be partitioned to graphs isomorphic to T.

Day 2

4 Let $P_{1}, P_{2}, P_{3}, P_{4}$ be points on the unit sphere. Prove that $\sum_{i \neq j} \frac{1}{\left|P_{i}-P_{j}\right|}$ takes its minimum value if and only if these four points are vertices of a regular pyramid.

5 Let $a, b, c>0$ and $a b+b c+c a=1$. Prove that:

$$
\sqrt{a^{3}+a}+\sqrt{b^{3}+b}+\sqrt{c^{3}+c} \geq 2 \sqrt{a+b+c} .
$$

6 Prove that in a tournament with 799 teams, there exist 14 teams, that can be partitioned into groups in a way that all of the teams in the first group have won all of the teams in the second group.

Day 3

7 Let S be a set with n elements, and F be a family of subsets of S with 2^{n-1} elements, such that for each $A, B, C \in F, A \cap B \cap C$ is not empty. Prove that the intersection of all of the elements of F is not empty.

8 Find all polynomials p of one variable with integer coefficients such that if a and b are natural numbers such that $a+b$ is a perfect square, then $p(a)+p(b)$ is also a perfect square.
$9 I_{a}$ is the excenter of the triangle $A B C$ with respect to A, and $A I_{a}$ intersects the circumcircle of $A B C$ at T. Let X be a point on $T I_{a}$ such that $X I_{a}^{2}=X A . X T$. Draw a perpendicular line from X to $B C$ so that it intersects $B C$ in A^{\prime}. Define B^{\prime} and C^{\prime} in the same way. Prove that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are concurrent.

Day 4

10 In the triangle $A B C, \angle B$ is greater than $\angle C . T$ is the midpoint of the arc $B A C$ from the circumcircle of $A B C$ and I is the incenter of $A B C$. E is a point such that $\angle A E I=90^{\circ}$ and $A E \| B C$. $T E$ intersects the circumcircle of $A B C$ for the second time in P. If $\angle B=\angle I P B$, find the angle $\angle A$.
$11 k$ is a given natural number. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for each $m, n \in \mathbb{N}$ the following holds:

$$
f(m)+f(n) \mid(m+n)^{k}
$$

12 In the acute-angled triangle $A B C, D$ is the intersection of the altitude passing through A with $B C$ and I_{a} is the excenter of the triangle with respect to $A . K$ is a point on the extension of $A B$ from B, for which $\angle A K I_{a}=90^{\circ}+\frac{3}{4} \angle C . I_{a} K$ intersects the extension of $A D$ at L. Prove that $D I_{a}$ bisects the angle $\angle A I_{a} B$ iff $A L=2 R$. (R is the circumradius of $A B C$)

