

AoPS Community

Iran Team Selection Test 2008

www.artofproblemsolving.com/community/c5384 by Omid Hatami

Day 1

1	Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that for each $x, y \in \mathbb{R}$:
	f(xf(y)) + y + f(x) = f(x + f(y)) + yf(x)
2	Suppose that I is incenter of triangle ABC and l' is a line tangent to the incircle. Let l be
Z	another line such that intersects AB , AC , BC respectively at C' , B' , A' . We draw a tangent from A' to the incircle other than BC , and this line intersects with l' at A_1 . B_1 , C_1 are similarly defined. Prove that AA_1 , BB_1 , CC_1 are concurrent.
3	Suppose that T is a tree with k edges. Prove that the k -dimensional cube can be partitioned to graphs isomorphic to T .
Day 2	
4	Let P_1, P_2, P_3, P_4 be points on the unit sphere. Prove that $\sum_{i \neq j} \frac{1}{ P_i - P_j }$ takes its minimum value if and only if these four points are vertices of a regular pyramid.
5	Let $a, b, c > 0$ and $ab + bc + ca = 1$. Prove that:
	$\sqrt{a^3 + a} + \sqrt{b^3 + b} + \sqrt{c^3 + c} \ge 2\sqrt{a + b + c}.$
6	Prove that in a tournament with 799 teams, there exist 14 teams, that can be partitioned into groups in a way that all of the teams in the first group have won all of the teams in the second group.
Day 3	
7	Let S be a set with n elements, and F be a family of subsets of S with 2^{n-1} elements, such that for each $A, B, C \in F$, $A \cap B \cap C$ is not empty. Prove that the intersection of all of the elements of F is not empty.

AoPS Community

- **8** Find all polynomials p of one variable with integer coefficients such that if a and b are natural numbers such that a + b is a perfect square, then p(a) + p(b) is also a perfect square.
- 9 I_a is the excenter of the triangle ABC with respect to A, and AI_a intersects the circumcircle of ABC at T. Let X be a point on TI_a such that $XI_a^2 = XA.XT$. Draw a perpendicular line from X to BC so that it intersects BC in A'. Define B' and C' in the same way. Prove that AA', BB' and CC' are concurrent.

Day 4

- **10** In the triangle ABC, $\angle B$ is greater than $\angle C$. *T* is the midpoint of the arc BAC from the circumcircle of ABC and *I* is the incenter of ABC. *E* is a point such that $\angle AEI = 90^{\circ}$ and $AE \parallel BC$. *TE* intersects the circumcircle of ABC for the second time in *P*. If $\angle B = \angle IPB$, find the angle $\angle A$.
- 11 k is a given natural number. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for each $m, n \in \mathbb{N}$ the following holds:

$$f(m) + f(n) \mid (m+n)^k$$

12 In the acute-angled triangle ABC, D is the intersection of the altitude passing through A with BC and I_a is the excenter of the triangle with respect to A. K is a point on the extension of AB from B, for which $\angle AKI_a = 90^\circ + \frac{3}{4}\angle C$. I_aK intersects the extension of AD at L. Prove that DI_a bisects the angle $\angle AI_aB$ iff AL = 2R. (R is the circumradius of ABC)

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.