

AoPS Community

Iran Team	Selection	Test 2009
-----------	-----------	-----------

www.artofproblemsolving.com/community/c5385 by khashi70

Day 1		
1	Let ABC be a triangle and A' , B' and C' lie on BC , CA and AB respectively such that the incenter of $A'B'C'$ and ABC are coincide and the inradius of $A'B'C'$ is half of inradius of ABC . Prove that ABC is equilateral.	
2	Let <i>a</i> be a fix natural number . Prove that the set of prime divisors of $2^{2^n} + a$ for $n = 1, 2, \cdots$ is infinite	
3	Suppose that <i>a,b,c</i> be three positive real numbers such that $a + b + c = 3$. Prove that : $\frac{1}{2+a^2+b^2} + \frac{1}{2+b^2+c^2} + \frac{1}{2+c^2+a^2} \le \frac{3}{4}$	
Day 2		
4	Find all polynomials f with integer coefficient such that, for every prime p and natural numbers u and v with the condition: $p \mid uv - 1$	
	we always have $p \mid f(u)f(v) - 1$.	
5	ABC is a triangle and AA' , BB' and CC' are three altitudes of this triangle . Let P be the feet of perpendicular from C' to $A'B'$, and Q is a point on $A'B'$ such that $QA = QB$. Prove that : $\angle PBQ = \angle PAQ = \angle PC'C$	
6	We have a closed path on a vertices of a nn square which pass from each vertice exactly once . prove that we have two adjacent vertices such that if we cut the path from these points then length of each pieces is not less than quarter of total path .	
Day 3		
7	Suppose three direction on the plane . We draw 11 lines in each direction . Find maximum number of the points on the plane which are on three lines .	
8	Find all polynomials $P(x, y)$ such that for all reals x and y ,	
	$P(x^2, y^2) = P\left(rac{(x+y)^2}{2}, rac{(x-y)^2}{2} ight).$	

AoPS Community

2009 Iran Team Selection Test

9 In triangle ABC, D, E and F are the points of tangency of incircle with the center of I to BC, CA and AB respectively. Let M be the foot of the perpendicular from D to EF. P is on DM such that DP = MP. If H is the orthocenter of BIC, prove that PH bisects EF.

Day 4

- **10** Let *ABC* be a triangle and *AB* \neq *AC*. *D* is a point on *BC* such that *BA* = *BD* and *B* is between *C* and *D*. Let *I_c* be center of the circle which touches *AB* and the extensions of *AC* and *BC*. *CI_c* intersect the circumcircle of *ABC* again at *T*. If $\angle TDI_c = \frac{\angle B + \angle C}{4}$ then find $\angle A$
- **11** Let *n* be a positive integer. Prove that

$$3\frac{5^{2^n}-1}{2^{n+2}} \equiv (-5)\frac{3^{2^n}-1}{2^{n+2}} \pmod{2^{n+4}}.$$

12 T is a subset of 1, 2, ..., n which has this property : for all distinct $i, j \in T$, 2j is not divisible by i. Prove that : $|T| \le \frac{4}{9}n + \log_2 n + 2$

AoPS Online 🕸 AoPS Academy 🕸 AoPS 🗱