Art of Problem Solving

AoPS Community

Iran Team Selection Test 2009

www.artofproblemsolving.com/community/c5385
by khashi70

Day 1

1 Let $A B C$ be a triangle and A^{\prime}, B^{\prime} and C^{\prime} lie on $B C, C A$ and $A B$ respectively such that the incenter of $A^{\prime} B^{\prime} C^{\prime}$ and $A B C$ are coincide and the inradius of $A^{\prime} B^{\prime} C^{\prime}$ is half of inradius of $A B C$. Prove that $A B C$ is equilateral .

2 Let a be a fix natural number. Prove that the set of prime divisors of $2^{2^{n}}+a$ for $n=1,2, \ldots$ is infinite

3 Suppose that a, b, c be three positive real numbers such that $a+b+c=3$. Prove that :
$\frac{1}{2+a^{2}+b^{2}}+\frac{1}{2+b^{2}+c^{2}}+\frac{1}{2+c^{2}+a^{2}} \leq \frac{3}{4}$

Day 2

4 Find all polynomials f with integer coefficient such that, for every prime p and natural numbers u and v with the condition:

$$
p \mid u v-1
$$

we always have $p \mid f(u) f(v)-1$.
$5 \quad A B C$ is a triangle and $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are three altitudes of this triangle. Let P be the feet of perpendicular from C^{\prime} to $A^{\prime} B^{\prime}$, and Q is a point on $A^{\prime} B^{\prime}$ such that $Q A=Q B$. Prove that : $\angle P B Q=\angle P A Q=\angle P C^{\prime} C$

6 We have a closed path on a vertices of a $n n$ square which pass from each vertice exactly once . prove that we have two adjacent vertices such that if we cut the path from these points then length of each pieces is not less than quarter of total path.

Day 3

7 Suppose three direction on the plane. We draw 11 lines in each direction. Find maximum number of the points on the plane which are on three lines.

8 Find all polynomials $P(x, y)$ such that for all reals x and y,

$$
P\left(x^{2}, y^{2}\right)=P\left(\frac{(x+y)^{2}}{2}, \frac{(x-y)^{2}}{2}\right) .
$$

9 In triangle $A B C, D, E$ and F are the points of tangency of incircle with the center of I to $B C$, $C A$ and $A B$ respectively. Let M be the foot of the perpendicular from D to $E F$. P is on $D M$ such that $D P=M P$. If H is the orthocenter of $B I C$, prove that $P H$ bisects $E F$.

Day 4

10 Let $A B C$ be a triangle and $A B \neq A C . D$ is a point on $B C$ such that $B A=B D$ and B is between C and D. Let I_{c} be center of the circle which touches $A B$ and the extensions of $A C$ and $B C . C I_{c}$ intersect the circumcircle of $A B C$ again at T.
If $\angle T D I_{c}=\frac{\angle B+\angle C}{4}$ then find $\angle A$
11 Let n be a positive integer. Prove that

$$
3^{\frac{5^{2^{n}}-1}{2^{n+2}}} \equiv(-5)^{\frac{3^{2^{n}}-1}{2^{n+2}}}\left(\bmod 2^{n+4}\right)
$$

$12 T$ is a subset of $1,2, \ldots, n$ which has this property : for all distinct $i, j \in T, 2 j$ is not divisible by i. Prove that : $|T| \leq \frac{4}{9} n+\log _{2} n+2$

