Art of Problem Solving

AoPS Community

Iran Team Selection Test 2011

www.artofproblemsolving.com/community/c5387
by goldeneagle, Potla, shoki

Day 1

1 In acute triangle $A B C$ angle B is greater than C. Let M is midpoint of $B C . D$ and E are the feet of the altitude from C and B respectively. K and L are midpoint of $M E$ and $M D$ respectively. If $K L$ intersect the line through A parallel to $B C$ in T, prove that $T A=T M$.

2 Find all natural numbers n greater than 2 such that there exist n natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ such that they are not all equal, and the sequence $a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{n} a_{1}$ forms an arithmetic progression with nonzero common difference.

3 There are n points on a circle ($n>1$). Define an "interval" as an arc of a circle such that it's start and finish are from those points. Consider a family of intervals F such that for every element of F like A there is almost one other element of F like B such that $A \subseteq B$ (in this case we call A is sub-interval of B). We call an interval maximal if it is not a sub-interval of any other interval. If m is the number of maximal elements of F and a is number of non-maximal elements of F, prove that $n \geq m+\frac{a}{2}$.

Day 2

4 Define a finite set A to be 'good' if it satisfies the following conditions:
-(a) For every three disjoint element of A, like a, b, c we have $\operatorname{gcd}(a, b, c)=1$;
-(b) For every two distinct $b, c \in A$, there exists an $a \in A$, distinct from b, c such that $b c$ is divisible by a.
Find all good sets.
5 Find all surjective functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every $x, y \in \mathbb{R}$, we have

$$
f(x+f(x)+2 f(y))=f(2 x)+f(2 y) .
$$

6 The circle ω with center O has given. From an arbitrary point T outside of ω draw tangents $T B$ and $T C$ to it. K and H are on $T B$ and $T C$ respectively.
a) B^{\prime} and C^{\prime} are the second intersection point of $O B$ and $O C$ with ω respectively. K^{\prime} and H^{\prime} are on angle bisectors of $\angle B C O$ and $\angle C B O$ respectively such that $K K^{\prime} \perp B C$ and $H H^{\prime} \perp B C$. Prove that $K, H^{\prime}, B^{\prime}$ are collinear if and only if $H, K^{\prime}, C^{\prime}$ are collinear.

AoPS Community

2011 Iran Team Selection Test

b) Consider there exist two circle in $T B C$ such that they are tangent two each other at J and both of them are tangent to ω.and one of them is tangent to $T B$ at K and other one is tangent to $T C$ at H. Prove that two quadrilateral $B K J I$ and $C H J I$ are cyclic (I is incenter of triangle $O B C)$.

Day 3

7 Find the locus of points P in an equilateral triangle $A B C$ for which the square root of the distance of P to one of the sides is equal to the sum of the square root of the distance of P to the two other sides.

8 Let p be a prime and k a positive integer such that $k \leq p$. We know that $f(x)$ is a polynomial in $\mathbb{Z}[x]$ such that for all $x \in \mathbb{Z}$ we have $p^{k} \mid f(x)$.
(a) Prove that there exist polynomials $A_{0}(x), \ldots, A_{k}(x)$ all in $\mathbb{Z}[x]$ such that

$$
f(x)=\sum_{i=0}^{k}\left(x^{p}-x\right)^{i} p^{k-i} A_{i}(x)
$$

(b) Find a counter example for each prime p and each $k>p$.

9 We have n points in the plane such that they are not all collinear. We call a line ℓ a 'good' line if we can divide those n points in two sets A, B such that the sum of the distances of all points in A to ℓ is equal to the sum of the distances of all points in B to ℓ. Prove that there exist infinitely many points in the plane such that for each of them we have at least $n+1$ good lines passing through them.

Day 4

10 Find the least value of k such that for all $a, b, c, d \in \mathbb{R}$ the inequality

$$
\begin{gathered}
\sqrt{\left(a^{2}+1\right)\left(b^{2}+1\right)\left(c^{2}+1\right)}+\sqrt{\left(b^{2}+1\right)\left(c^{2}+1\right)\left(d^{2}+1\right)}+\sqrt{\left(c^{2}+1\right)\left(d^{2}+1\right)\left(a^{2}+1\right)}+\sqrt{\left(d^{2}+1\right)\left(a^{2}+1\right)(b} \\
\geq 2(a b+b c+c d+d a+a c+b d)-k
\end{gathered}
$$

holds.
11 Let $A B C$ be a triangle and $A^{\prime}, B^{\prime}, C^{\prime}$ be the midpoints of $B C, C A, A B$ respectively. Let P and P^{\prime} be points in plane such that $P A=P^{\prime} A^{\prime}, P B=P^{\prime} B^{\prime}, P C=P^{\prime} C^{\prime}$. Prove that all $P P^{\prime}$ pass through a fixed point.

12 Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function for which the expression $a f(a)+b f(b)+2 a b$ for all $a, b \in \mathbb{N}$ is always a perfect square. Prove that $f(a)=a$ for all $a \in \mathbb{N}$.

