

2012 Iran Team Selection Test

Iran Team Selection Test 2012

www.artofproblemsolving.com/community/c5388 by goldeneagle, goodar2006

– Exam 1

Day 1	
1 F h	Find all positive integers $n \ge 2$ such that for all integers i, j that $0 \le i, j \le n$, $i+j$ and $\binom{n}{i} + \binom{n}{j}$ have same parity.
F	Proposed by Mr.Etesami
2 C o A	Consider ω is circumcircle of an acute triangle ABC . D is midpoint of arc BAC and I is incenter of triangle ABC . Let DI intersect BC in E and ω for second time in F . Let P be a point on line AF such that PE is parallel to AI . Prove that PE is bisector of angle BPC .
P	Proposed by Mr.Etesami
3 L	Let n be a positive integer. Let S be a subset of points on the plane with these conditions:
i) ti) There does not exist n lines in the plane such that every element of S be on at least one of hem.
i: le	i) for all $X \in S$ there exists n lines in the plane such that every element of $S - X$ be on at east one of them.
F	Find maximum of $\mid S \mid$.
F	Proposed by Erfan Salavati

Day 2

1 Consider m + 1 horizontal and n + 1 vertical lines $(m, n \ge 4)$ in the plane forming an $m \times n$ table. Cosider a closed path on the segments of this table such that it does not intersect itself and also it passes through all (m - 1)(n - 1) interior vertices (each vertex is an intersection point of two lines) and it doesn't pass through any of outer vertices. Suppose A is the number of vertices such that the path passes through them straight forward, B number of the table squares that only their two opposite sides are used in the path, and C number of the table squares that none of their sides is used in the path. Prove that

$$A = B - C + m + n - 1.$$

Proposed by Ali Khezeli

2 The function $f : \mathbb{R}^{\geq 0} \longrightarrow \mathbb{R}^{\geq 0}$ satisfies the following properties for all $a, b \in \mathbb{R}^{\geq 0}$:

a) $f(a) = 0 \Leftrightarrow a = 0$

b) f(ab) = f(a)f(b)

c) $f(a+b) \le 2 \max\{f(a), f(b)\}.$

Prove that for all $a, b \in \mathbb{R}^{\geq 0}$ we have $f(a + b) \leq f(a) + f(b)$.

Proposed by Masoud Shafaei

3 The pentagon ABCDE is inscirbed in a circle w. Suppose that w_a, w_b, w_c, w_d, w_e are reflections of w with respect to sides AB, BC, CD, DE, EA respectively. Let A' be the second intersection point of w_a, w_e and define B', C', D', E' similarly. Prove that

$$2 \leq \frac{S_{A'B'C'D'E'}}{S_{ABCDE}} \leq 3,$$

where S_X denotes the surface of figure X.

Proposed by Morteza Saghafian, Ali khezeli

– Exam 2

Day 1

1 Is it possible to put $\binom{n}{2}$ consecutive natural numbers on the edges of a complete graph with n vertices in a way that for every path (or cycle) of length 3 where the numbers a, b and c are written on its edges (edge b is between edges c and a), b is divisible by the greatest common divisor of the numbers a and c?

Proposed by Morteza Saghafian

2 Let g(x) be a polynomial of degree at least 2 with all of its coefficients positive. Find all functions $f : \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ such that

$$f(f(x) + g(x) + 2y) = f(x) + g(x) + 2f(y) \quad \forall x, y \in \mathbb{R}^+.$$

Proposed by Mohammad Jafari

3 Suppose ABCD is a parallelogram. Consider circles w_1 and w_2 such that w_1 is tangent to segments AB and AD and w_2 is tangent to segments BC and CD. Suppose that there exists a circle which is tangent to lines AD and DC and externally tangent to w_1 and w_2 . Prove that there exists a circle which is tangent to lines AB and BC and BC and also externally tangent to circles w_1 and w_2 .

Proposed by Ali Khezeli

Day 2

1 For positive reals a, b and c with ab + bc + ca = 1, show that

$$\sqrt{3}(\sqrt{a} + \sqrt{b} + \sqrt{c}) \le \frac{a\sqrt{a}}{bc} + \frac{b\sqrt{b}}{ca} + \frac{c\sqrt{c}}{ab}.$$

Proposed by Morteza Saghafian

2 Points *A* and *B* are on a circle ω with center *O* such that $\frac{\pi}{3} < \angle AOB < \frac{2\pi}{3}$. Let *C* be the circumcenter of the triangle *AOB*. Let *l* be a line passing through *C* such that the angle between *l* and the segment *OC* is $\frac{\pi}{3}$. *l* cuts tangents in *A* and *B* to ω in *M* and *N* respectively. Suppose circumcircles of triangles *CAM* and *CBN*, cut ω again in *Q* and *R* respectively and theirselves in *P* (other than *C*). Prove that $OP \perp QR$.

Proposed by Mehdi E'tesami Fard, Ali Khezeli

3 We call a subset *B* of natural numbers *loyal* if there exists natural numbers $i \le j$ such that $B = \{i, i+1, \ldots, j\}$. Let *Q* be the set of all *loyal* sets. For every subset $A = \{a_1 < a_2 < \ldots < a_k\}$ of $\{1, 2, \ldots, n\}$ we set

$$f(A) = \max_{1 \le i \le k-1} a_{i+1} - a_i \quad \text{and} \quad g(A) = \max_{B \subseteq A, B \in Q} |B|.$$

Furthermore, we define

$$F(n) = \sum_{A \subseteq \{1,2,\dots,n\}} f(A) \qquad \text{and} \qquad G(n) = \sum_{A \subseteq \{1,2,\dots,n\}} g(A).$$

Prove that there exists $m \in \mathbb{N}$ such that for each natural number n > m we have F(n) > G(n). (By |A| we mean the number of elements of A, and if $|A| \le 1$, we define f(A) to be zero).

Proposed by Javad Abedi

Day 1

1 Consider a regular 2^k -gon with center O and label its sides clockwise by $l_1, l_2, ..., l_{2^k}$. Reflect O with respect to l_1 , then reflect the resulting point with respect to l_2 and do this process until the last side. Prove that the distance between the final point and O is less than the perimeter of the 2^k -gon.

Proposed by Hesam Rajabzade

2 Do there exist 2000 real numbers (not necessarily distinct) such that all of them are not zero and if we put any group containing 1000 of them as the roots of a monic polynomial of degree 1000, the coefficients of the resulting polynomial (except the coefficient of x^{1000}) be a permutation of the 1000 remaining numbers?

Proposed by Morteza Saghafian

3 Find all integer numbers *x* and *y* such that:

$$(y^{3} + xy - 1)(x^{2} + x - y) = (x^{3} - xy + 1)(y^{2} + x - y).$$

Proposed by Mahyar Sefidgaran

Day 2

1 Suppose p is an odd prime number. We call the polynomial $f(x) = \sum_{j=0}^{n} a_j x^j$ with integer coefficients *i*-remainder if $\sum_{p-1|j,j>0} a_j \equiv i \pmod{p}$. Prove that the set $\{f(0), f(1), ..., f(p-1)\}$ is a complete residue system modulo p if and only if polynomials $f(x), (f(x))^2, ..., (f(x))^{p-2}$ are 0-remainder and the polynomial $(f(x))^{p-1}$ is 1-remainder.

Proposed by Yahya Motevassel

2 Let *n* be a natural number. Suppose *A* and *B* are two sets, each containing *n* points in the plane, such that no three points of a set are collinear. Let T(A) be the number of broken lines, each containing n - 1 segments, and such that it doesn't intersect itself and its vertices are points of *A*. Define T(B) similarly. If the points of *B* are vertices of a convex *n*-gon (are in *convex position*), but the points of *A* are not, prove that T(B) < T(A).

Proposed by Ali Khezeli

3 Let *O* be the circumcenter of the acute triangle *ABC*. Suppose points *A'*, *B'* and *C'* are on sides *BC*, *CA* and *AB* such that circumcircles of triangles *AB'C'*, *BC'A'* and *CA'B'* pass through *O*. Let ℓ_a be the radical axis of the circle with center *B'* and radius *B'C* and circle with center *C'* and radius *C'B*. Define ℓ_b and ℓ_c similarly. Prove that lines ℓ_a , ℓ_b and ℓ_c form a triangle such that it's orthocenter coincides with orthocenter of triangle *ABC*.

Proposed by Mehdi E'tesami Fard

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.