Art of Problem Solving

AoPS Community

Iran Team Selection Test 2012

www.artofproblemsolving.com/community/c5388
by goldeneagle, goodar2006

- Exam 1

Day 1

1 Find all positive integers $n \geq 2$ such that for all integers i, j that $0 \leq i, j \leq n, i+j$ and $\binom{n}{i}+\binom{n}{j}$ have same parity.

Proposed by Mr.Etesami
2 Consider ω is circumcircle of an acute triangle $A B C$. D is midpoint of arc $B A C$ and I is incenter of triangle $A B C$. Let $D I$ intersect $B C$ in E and ω for second time in F. Let P be a point on line $A F$ such that $P E$ is parallel to $A I$. Prove that $P E$ is bisector of angle $B P C$.

Proposed by Mr.Etesami
3 Let n be a positive integer. Let S be a subset of points on the plane with these conditions:
${ }^{i}$) There does not exist n lines in the plane such that every element of S be on at least one of them.
ii) for all $X \in S$ there exists n lines in the plane such that every element of $S-X$ be on at least one of them.

Find maximum of | $S \mid$.
Proposed by Erfan Salavati

Day 2

1 Consider $m+1$ horizontal and $n+1$ vertical lines ($m, n \geq 4$) in the plane forming an $m \times n$ table. Cosider a closed path on the segments of this table such that it does not intersect itself and also it passes through all $(m-1)(n-1)$ interior vertices (each vertex is an intersection point of two lines) and it doesn't pass through any of outer vertices. Suppose A is the number of vertices such that the path passes through them straight forward, B number of the table squares that only their two opposite sides are used in the path, and C number of the table squares that none of their sides is used in the path. Prove that

$$
A=B-C+m+n-1
$$

Proposed by Ali Khezeli

2 The function $f: \mathbb{R}^{\geq 0} \longrightarrow \mathbb{R}^{\geq 0}$ satisfies the following properties for all $a, b \in \mathbb{R}^{\geq 0}$:
a) $f(a)=0 \Leftrightarrow a=0$
b) $f(a b)=f(a) f(b)$
c) $f(a+b) \leq 2 \max \{f(a), f(b)\}$.

Prove that for all $a, b \in \mathbb{R}^{\geq 0}$ we have $f(a+b) \leq f(a)+f(b)$.
Proposed by Masoud Shafaei
3 The pentagon $A B C D E$ is inscirbed in a circle w. Suppose that $w_{a}, w_{b}, w_{c}, w_{d}, w_{e}$ are reflections of w with respect to sides $A B, B C, C D, D E, E A$ respectively. Let A^{\prime} be the second intersection point of w_{a}, w_{e} and define $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ similarly. Prove that

$$
2 \leq \frac{S_{A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}}}{S_{A B C D E}} \leq 3,
$$

where S_{X} denotes the surface of figure X.
Proposed by Morteza Saghafian, Ali khezeli

- Exam 2

Day 1

1 Is it possible to put $\binom{n}{2}$ consecutive natural numbers on the edges of a complete graph with n vertices in a way that for every path (or cycle) of length 3 where the numbers a, b and c are written on its edges (edge b is between edges c and a), b is divisible by the greatest common divisor of the numbers a and c ?

Proposed by Morteza Saghafian
2 Let $g(x)$ be a polynomial of degree at least 2 with all of its coefficients positive. Find all functions $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$such that

$$
f(f(x)+g(x)+2 y)=f(x)+g(x)+2 f(y) \quad \forall x, y \in \mathbb{R}^{+} .
$$

Proposed by Mohammad Jafari

3 Suppose $A B C D$ is a parallelogram. Consider circles w_{1} and w_{2} such that w_{1} is tangent to segments $A B$ and $A D$ and w_{2} is tangent to segments $B C$ and $C D$. Suppose that there exists a circle which is tangent to lines $A D$ and $D C$ and externally tangent to w_{1} and w_{2}. Prove that there exists a circle which is tangent to lines $A B$ and $B C$ and also externally tangent to circles w_{1} and w_{2}.

Proposed by Ali Khezeli

Day 2

1 For positive reals a, b and c with $a b+b c+c a=1$, show that

$$
\sqrt{3}(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq \frac{a \sqrt{a}}{b c}+\frac{b \sqrt{b}}{c a}+\frac{c \sqrt{c}}{a b} .
$$

Proposed by Morteza Saghafian

2 Points A and B are on a circle ω with center O such that $\frac{\pi}{3}<\angle A O B<\frac{2 \pi}{3}$. Let C be the circumcenter of the triangle $A O B$. Let l be a line passing through C such that the angle between l and the segment $O C$ is $\frac{\pi}{3} . l$ cuts tangents in A and B to ω in M and N respectively. Suppose circumcircles of triangles $C A M$ and $C B N$, cut ω again in Q and R respectively and theirselves in P (other than C). Prove that $O P \perp Q R$.

Proposed by Mehdi E'tesami Fard, Ali Khezeli

$3 \quad$ We call a subset B of natural numbers loyal if there exists natural numbers $i \leq j$ such that $B=\{i, i+1, \ldots, j\}$. Let Q be the set of all loyal sets. For every subset $A=\left\{a_{1}<a_{2}<\ldots<a_{k}\right\}$ of $\{1,2, \ldots, n\}$ we set

$$
f(A)=\max _{1 \leq i \leq k-1} a_{i+1}-a_{i} \quad \text { and } \quad g(A)=\max _{B \subseteq A, B \in Q}|B| .
$$

Furthermore, we define

$$
F(n)=\sum_{A \subseteq\{1,2, \ldots, n\}} f(A) \quad \text { and } \quad G(n)=\sum_{A \subseteq\{1,2, \ldots, n\}} g(A) .
$$

Prove that there exists $m \in \mathbb{N}$ such that for each natural number $n>m$ we have $F(n)>G(n)$. (By $|A|$ we mean the number of elements of A, and if $|A| \leq 1$, we define $f(A)$ to be zero).

Proposed by Javad Abedi

- Exam 3

Day 1

1 Consider a regular 2^{k}-gon with center O and label its sides clockwise by $l_{1}, l_{2}, \ldots, l_{2^{k}}$. Reflect O with respect to l_{1}, then reflect the resulting point with respect to l_{2} and do this process until the last side. Prove that the distance between the final point and O is less than the perimeter of the 2^{k}-gon.
Proposed by Hesam Rajabzade

2 Do there exist 2000 real numbers (not necessarily distinct) such that all of them are not zero and if we put any group containing 1000 of them as the roots of a monic polynomial of degree 1000, the coefficients of the resulting polynomial (except the coefficient of x^{1000}) be a permutation of the 1000 remaining numbers?

Proposed by Morteza Saghafian
$3 \quad$ Find all integer numbers x and y such that:

$$
\left(y^{3}+x y-1\right)\left(x^{2}+x-y\right)=\left(x^{3}-x y+1\right)\left(y^{2}+x-y\right) .
$$

Proposed by Mahyar Sefidgaran

Day 2

1 Suppose p is an odd prime number. We call the polynomial $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$ with integer coefficients i-remainder if $\sum_{p-1 \mid j, j>0} a_{j} \equiv i(\bmod p)$. Prove that the set $\{f(0), f(1), \ldots, f(p-1)\}$ is a complete residue system modulo p if and only if polynomials $f(x),(f(x))^{2}, \ldots,(f(x))^{p-2}$ are 0 -remainder and the polynomial $(f(x))^{p-1}$ is 1-remainder.

Proposed by Yahya Motevassel
2 Let n be a natural number. Suppose A and B are two sets, each containing n points in the plane, such that no three points of a set are collinear. Let $T(A)$ be the number of broken lines, each containing $n-1$ segments, and such that it doesn't intersect itself and its vertices are points of A. Define $T(B)$ similarly. If the points of B are vertices of a convex n-gon (are in convex position), but the points of A are not, prove that $T(B)<T(A)$.
Proposed by Ali Khezeli
3 Let O be the circumcenter of the acute triangle $A B C$. Suppose points A^{\prime}, B^{\prime} and C^{\prime} are on sides $B C, C A$ and $A B$ such that circumcircles of triangles $A B^{\prime} C^{\prime}, B C^{\prime} A^{\prime}$ and $C A^{\prime} B^{\prime}$ pass through O. Let ℓ_{a} be the radical axis of the circle with center B^{\prime} and radius $B^{\prime} C$ and circle with center C^{\prime} and radius $C^{\prime} B$. Define ℓ_{b} and ℓ_{c} similarly. Prove that lines ℓ_{a}, ℓ_{b} and ℓ_{c} form a triangle such that it's orthocenter coincides with orthocenter of triangle $A B C$.

Proposed by Mehdi E'tesami Fard

