AoPS Community

Iran Team Selection Test 2014

www.artofproblemsolving.com/community/c5390
by sahadian, TheOverlord, nima1376

- TST 1

Day 1

1 suppose that O is the circumcenter of acute triangle $A B C$.
we have circle with center O that is tangent too $B C$ that named w
suppose that X and Y are the points of intersection of the tangent from A to w with line $B C(X$ and B are in the same side of $A O) T$ is the intersection of the line tangent to circumcirle of $A B C$ in B and the line from X parallel to $A C . S$ is the intersection of the line tangent to circumcirle of $A B C$ in C and the line from Y parallel to $A B$.
prove that $S T$ is tangent $A B C$.
2 find all polynomials with integer coefficients that $P(\mathbb{Z})=p(a): a \in \mathbb{Z}$ has a Geometric progression.

3 we named a $n * n$ table sel fish if we number the row and column with $0,1,2,3, \ldots, n-1$.(from left to right an from up to down)
for every $i, j \in 0,1,2, \ldots, n-1$ the number of cell (i, j) is equal to the number of number i in the row j.
for example we have such table for $n=5$
10334
13211
01010
21000
10000
prove that for $n>5$ there is no selfish table

Day 2

4 Find the maximum number of Permutation of set $1,2,3, \ldots, 2014$ such that for every 2 different number a and b in this set at last in one of the permutation b comes exactly after a
$5 \quad n$ is a natural number. for every positive real numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ such that $x_{1} x_{2} \ldots x_{n+1}=1$ prove that: $\sqrt[x_{1}]{n}+\ldots+\sqrt[x_{n+1}]{n} \geq n \sqrt[n]{x_{1}}+\ldots+n \sqrt[n]{x_{n+1}}$
$6 \quad I$ is the incenter of triangle $A B C$. perpendicular from I to $A I$ meet $A B$ and $A C$ at B^{\prime} and C^{\prime} respectively .

2014 Iran Team Selection Test

Suppose that $B^{\prime \prime}$ and $C^{\prime \prime}$ are points on half-line $B C$ and $C B$ such that $B B^{\prime \prime}=B A$ and $C C^{\prime \prime}=$ $C A$.
Suppose that the second intersection of circumcircles of $A B^{\prime} B^{\prime \prime}$ and $A C^{\prime} C^{\prime \prime}$ is T. Prove that the circumcenter of $A I T$ is on the $B C$.

```
- TST2
```


Day 1

1 Consider a tree with n vertices, labeled with $1, \ldots, n$ in a way that no label is used twice. We change the labeling in the following way - each time we pick an edge that hasn't been picked before and swap the labels of its endpoints. After performing this action $n-1$ times, we get another tree with its labeling a permutation of the first graph's labeling.
Prove that this permutation contains exactly one cycle.
2 Point D is an arbitary point on side $B C$ of triangle $A B C . I, I_{1}$ and I_{2} are the incenters of triangles $A B C, A B D$ and $A C D$ respectively. $M \neq A$ and $N \neq A$ are the intersections of circumcircle of triangle $A B C$ and circumcircles of triangles $I A I_{1}$ and $I A I_{2}$ respectively. Prove that regardless of point D, line $M N$ goes through a fixed point.

3 prove for all $k>1$ equation $(x+1)(x+2) \ldots(x+k)=y^{2}$ has finite solutions.

Day 2

$4 n$ is a natural number. We shall call a permutation a_{1}, \ldots, a_{n} of $1, \ldots, n$ a quadratic(cubic) permutation if $\forall 1 \leq i \leq n-1$ we have $a_{i} a_{i+1}+1$ is a perfect square(cube). (a) Prove that for infinitely many natural numbers n there exists a quadratic permutation. (b) Prove that for no natural number n exists a cubic permutation.

5 if $x, y, z>0$ are postive real numbers such that $x^{2}+y^{2}+z^{2}=x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}$ prove that

$$
((x-y)(y-z)(z-x))^{2} \leq 2\left(\left(x^{2}-y^{2}\right)^{2}+\left(y^{2}-z^{2}\right)^{2}+\left(z^{2}-x^{2}\right)^{2}\right)
$$

6 Consider n segments in the plane which no two intersect and between their $2 n$ endpoints no three are collinear. Is the following statement true?
Statement: There exists a simple $2 n$-gon such that it's vertices are the $2 n$ endpoints of the segments and each segment is either completely inside the polygon or an edge of the polygon.

- TST 3

Day 1

1 The incircle of a non-isosceles triangle $A B C$ with the center I touches the sides $B C, A C, A B$ at A_{1}, B_{1}, C_{1}.
let $A I, B I, C I$ meets $B C, A C, A B$ at A_{2}, B_{2}, C_{2}.
let A^{\prime} is a point on $A I$ such that $A_{1} A^{\prime} \perp B_{2} C_{2} . B^{\prime}, C^{\prime}$ respectively. prove that two triangle $A^{\prime} B^{\prime} C^{\prime}, A_{1} B_{1} C_{1}$ are equal.
$2 \quad$ is there a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $i) \exists n \in \mathbb{N}: f(n) \neq n i i)$ the number of divisors of m is $f(n)$ if and only if the number of divisors of $f(m)$ is n

3 let $m, n \in \mathbb{N}$ and $p(x), q(x), h(x)$ are polynomials with real Coefficients such that $p(x)$ is Descending.
and for all $x \in \mathbb{R} p(q(n x+m)+h(x))=n(q(p(x))+h(x))+m$.
prove that dont exist function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in \mathbb{R} f(q(p(x))+h(x))=f(x)^{2}+1$

Day 2

$4 \quad$ Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $x, y \in \mathbb{R}^{+}$,

$$
f\left(\frac{y}{f(x+1)}\right)+f\left(\frac{x+1}{x f(y)}\right)=f(y)
$$

5 Given a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of natural numbers in which for all $1<i \leq n$ we have $1 \leq$ $x_{i}-x_{i-1} \leq 2$, call a real number a good if there exists $1 \leq j \leq n$ such that $2\left|x_{j}-a\right| \leq 1$. Also a subset of X is called compact if the average of its elements is a good number.
Prove that at least 2^{n-3} subsets of X are compact.
Proposed by Mahyar Sefidgaran
6 The incircle of a non-isosceles triangle $A B C$ with the center I touches the sides $B C$ at D. let X is a point on arc $B C$ from circumcircle of triangle $A B C$ such that if E, F are feet of perpendicular from X on $B I, C I$ and M is midpoint of $E F$ we have $M B=M C$.
prove that $\widehat{B A D}=\widehat{C A X}$

