

AoPS Community

2014 Iran Team Selection Test

Iran Team Selection Test 2014

www.artofproblemsolving.com/community/c5390 by sahadian, TheOverlord, nima1376

– TST 1

Day 1	
1	suppose that O is the circumcenter of acute triangle ABC . we have circle with center O that is tangent too BC that named w suppose that X and Y are the points of intersection of the tangent from A to w with line $BC(X$ and B are in the same side of AO) T is the intersection of the line tangent to circumcirle of ABC in B and the line from X parallel to AC . S is the intersection of the line tangent to circumcirle of ABC in C and the line from Y parallel to AB . prove that ST is tangent ABC .
2	find all polynomials with integer coefficients that $P(\mathbb{Z}) = p(a) : a \in \mathbb{Z}$ has a Geometric progression.
3	we named a $n * n$ table $selfish$ if we number the row and column with $0, 1, 2, 3,, n - 1$.(from left to right an from up to down) for every $i, j \in 0, 1, 2,, n - 1$ the number of cell (i, j) is equal to the number of number i in the row j . for example we have such table for $n = 5$ 10334 13211 01010 21000 10000 prove that for $n > 5$ there is no $selfish$ table
Day 2	
4	Find the maximum number of Permutation of set $1, 2, 3,, 2014$ such that for every 2 different number a and b in this set at last in one of the permutation b comes exactly after a
5	n is a natural number. for every positive real numbers $x_1, x_2,, x_{n+1}$ such that $x_1x_2x_{n+1} = 1$ prove that: $\sqrt[x_1]{n} + + \sqrt[x_{n+1}]{n} \ge n^{\sqrt[n]{x_1}} + + n^{\sqrt[n]{x_{n+1}}}$

6 *I* is the incenter of triangle *ABC*. perpendicular from *I* to *AI* meet *AB* and *AC* at *B'* and *C'* respectively.

AoPS (Community 2014 Iran Team Selection Test
	Suppose that B'' and C'' are points on half-line BC and CB such that $BB'' = BA$ and $CC'' = CA$. Suppose that the second intersection of circumcircles of $AB'B''$ and $AC'C''$ is T . Prove that the circumcenter of AIT is on the BC .
_	TST 2
Day 1	
1	Consider a tree with n vertices, labeled with $1, \ldots, n$ in a way that no label is used twice. We change the labeling in the following way - each time we pick an edge that hasn't been picked before and swap the labels of its endpoints. After performing this action $n - 1$ times, we get another tree with its labeling a permutation of the first graph's labeling. Prove that this permutation contains exactly one cycle.
2	Point <i>D</i> is an arbitary point on side <i>BC</i> of triangle <i>ABC</i> . <i>I</i> , <i>I</i> ₁ and <i>I</i> ₂ are the incenters of triangles <i>ABC</i> , <i>ABD</i> and <i>ACD</i> respectively. $M \neq A$ and $N \neq A$ are the intersections of circumcircle of triangle <i>ABC</i> and circumcircles of triangles <i>IAI</i> ₁ and <i>IAI</i> ₂ respectively. Prove that regardless of point <i>D</i> , line <i>MN</i> goes through a fixed point.
3	prove for all $k > 1$ equation $(x + 1)(x + 2)(x + k) = y^2$ has finite solutions.
Day 2	
4	n is a natural number. We shall call a permutation a_1, \ldots, a_n of $1, \ldots, n$ a quadratic(cubic) permutation if $\forall 1 \leq i \leq n-1$ we have $a_i a_{i+1} + 1$ is a perfect square(cube). (a) Prove that for infinitely many natural numbers n there exists a quadratic permutation. (b) Prove that for no natural number n exists a cubic permutation.
5	if $x,y,z>0$ are postive real numbers such that $x^2+y^2+z^2=x^2y^2+y^2z^2+z^2x^2$ prove that
	$((x-y)(y-z)(z-x))^2 \le 2((x^2-y^2)^2+(y^2-z^2)^2+(z^2-x^2)^2)$

6 Consider *n* segments in the plane which no two intersect and between their 2*n* endpoints no three are collinear. Is the following statement true? Statement: There exists a simple 2*n*-gon such that it's vertices are the 2*n* endpoints of the segments and each segment is either completely inside the polygon or an edge of the polygon.

- TST 3

AoPS Community

2014 Iran Team Selection Test

Day 1	
1	The incircle of a non-isosceles triangle ABC with the center I touches the sides BC , AC , AB at A_1, B_1, C_1 . let AI, BI, CI meets BC, AC, AB at A_2, B_2, C_2 . let A' is a point on AI such that $A_1A' \perp B_2C_2 .B', C'$ respectively. prove that two triangle $A'B'C', A_1B_1C_1$ are equal.
2	is there a function $f : \mathbb{N} \to \mathbb{N}$ such that $i \in \mathbb{N} : f(n) \neq n$ ii) the number of divisors of m is $f(n)$ if and only if the number of divisors of $f(m)$ is n
3	let $m, n \in \mathbb{N}$ and $p(x), q(x), h(x)$ are polynomials with real Coefficients such that $p(x)$ is Descending. and for all $x \in \mathbb{R}$ $p(q(nx + m) + h(x)) = n(q(p(x)) + h(x)) + m$. prove that dont exist function $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ $f(q(p(x)) + h(x)) = f(x)^2 + 1$
Day 2	
4	Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that $x, y \in \mathbb{R}^+$,
	$f\left(\frac{y}{f(x+1)}\right) + f\left(\frac{x+1}{xf(y)}\right) = f(y)$

5 Given a set $X = \{x_1, \ldots, x_n\}$ of natural numbers in which for all $1 < i \le n$ we have $1 \le x_i - x_{i-1} \le 2$, call a real number a good if there exists $1 \le j \le n$ such that $2|x_j - a| \le 1$. Also a subset of X is called **compact** if the average of its elements is a good number. Prove that at least 2^{n-3} subsets of X are compact.

Proposed by Mahyar Sefidgaran

6 The incircle of a non-isosceles triangle *ABC* with the center *I* touches the sides *BC* at *D*. let *X* is a point on arc *BC* from circumcircle of triangle *ABC* such that if *E*, *F* are feet of perpendicular from *X* on *BI*, *CI* and *M* is midpoint of *EF* we have MB = MC. prove that $\widehat{BAD} = \widehat{CAX}$

AoPS Online 🔯 AoPS Academy 🗿 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.