AoPS Community

Australia National Olympiad 2006

www.artofproblemsolving.com/community/c5391
by Arne

Day 1

$1 \quad$ Find all positive integers m and n such that $1+5 \cdot 2^{m}=n^{2}$.
2 Let f be a function defined on the positive integers, taking positive integral values, such that $f(a) f(b)=f(a b)$ for all positive integers a and $b, f(a)<f(b)$ if $a<b, f(3) \geq 7$.

Find the smallest possible value of $f(3)$.
$3 \quad$ Let $P R U S$ be a trapezium such that $\angle P S R=2 \angle Q S U$ and $\angle S P U=2 \angle U P R$. Let Q and T be on $P R$ and $S U$ respectively such that $S Q$ and $P U$ bisect $\angle P S R$ and $\angle S P U$ respectively. Let $P T$ meet $S Q$ at E. The line through E parallel to $S R$ meets $P U$ in F and the line through E parallel to $P U$ meets $S R$ in G. Let $F G$ meet $P R$ and $S U$ in K and L respectively. Prove that $K F=F G=G L$.

4 There are n points on a circle, such that each line segment connecting two points is either red or blue. $P_{i} P_{j}$ is red if and only if $P_{i+1} P_{j+1}$ is blue, for all distinct i, j in $\{1,2, \ldots, n\}$.
(a) For which values of n is this possible?
(b) Show that one can get from any point on the circle to any other point, by doing a maximum of 3 steps, where one step is moving from a point to another point through a red segment connecting these points.

Day 2

1 In a square $A B C D, E$ is a point on diagonal $B D . P$ and Q are the circumcentres of $\triangle A B E$ and $\triangle A D E$ respectively. Prove that $A P E Q$ is a square.

2 For any positive integer n, define a_{n} to be the product of the digits of n.
(a) Prove that $n \geq a(n)$ for all positive integers n.
(b) Find all n for which $n^{2}-17 n+56=a(n)$.

