

## **AoPS Community**

## Australia National Olympiad 2006

www.artofproblemsolving.com/community/c5391

by Arne

| Day 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Find all positive integers $m$ and $n$ such that $1 + 5 \cdot 2^m = n^2$ .                                                                                                                                                                                                                                                                                                                                                                        |
| 2     | Let <i>f</i> be a function defined on the positive integers, taking positive integral values, such that $f(a)f(b) = f(ab)$ for all positive integers <i>a</i> and <i>b</i> , $f(a) < f(b)$ if $a < b$ , $f(3) \ge 7$ .                                                                                                                                                                                                                            |
|       | Find the smallest possible value of $f(3)$ .                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3     | Let $PRUS$ be a trapezium such that $\angle PSR = 2\angle QSU$ and $\angle SPU = 2\angle UPR$ . Let $Q$ and $T$ be<br>on $PR$ and $SU$ respectively such that $SQ$ and $PU$ bisect $\angle PSR$ and $\angle SPU$ respectively. Let<br>PT meet $SQ$ at $E$ . The line through $E$ parallel to $SR$ meets $PU$ in $F$ and the line through $Eparallel to PU meets SR in G. Let FG meet PR and SU in K and L respectively. Prove thatKF = FG = GL$ . |
| 4     | There are <i>n</i> points on a circle, such that each line segment connecting two points is either red or blue. $P_iP_j$ is red if and only if $P_{i+1}P_{j+1}$ is blue, for all distinct $i, j$ in $\{1, 2,, n\}$ .                                                                                                                                                                                                                              |
|       | (a) For which values of <i>n</i> is this possible?<br>(b) Show that one can get from any point on the circle to any other point, by doing a maximum<br>of 3 steps, where one step is moving from a point to another point through a red segment<br>connecting these points.                                                                                                                                                                       |
| Day 2 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1     | In a square $ABCD$ , $E$ is a point on diagonal $BD$ . $P$ and $Q$ are the circumcentres of $\triangle ABE$ and $\triangle ADE$ respectively. Prove that $APEQ$ is a square.                                                                                                                                                                                                                                                                      |
| 2     | For any positive integer $n$ , define $a_n$ to be the product of the digits of $n$ .                                                                                                                                                                                                                                                                                                                                                              |
|       | (a) Prove that $n \ge a(n)$ for all positive integers $n$ .<br>(b) Find all $n$ for which $n^2 - 17n + 56 = a(n)$ .                                                                                                                                                                                                                                                                                                                               |

Art of Problem Solving is an ACS WASC Accredited School.