AoPS Community

www.artofproblemsolving.com/community/c53934 by djmathman, Wave-Particle

- Algebra

1 Let Q be a polynomial

$$
Q(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

where a_{0}, \ldots, a_{n} are nonnegative integers. Given that $Q(1)=4$ and $Q(5)=152$, find $Q(6)$.
2 The fraction $\frac{1}{2015}$ has a unique "(restricted) partial fraction decomposition" of the form

$$
\frac{1}{2015}=\frac{a}{5}+\frac{b}{13}+\frac{c}{31},
$$

where a, b, and c are integers with $0 \leq a<5$ and $0 \leq b<13$. Find $a+b$.
3 Let p be a real number and $c \neq 0$ such that

$$
c-0.1<x^{p}\left(\frac{1-(1+x)^{10}}{1+(1+x)^{10}}\right)<c+0.1
$$

for all (positive) real numbers x with $0<x<10^{-100}$. (The exact value 10^{-100} is not important. You could replace it with any "sufficiently small number".)
Find the ordered pair (p, c).
4 Compute the number of sequences of integers $\left(a_{1}, \ldots, a_{200}\right)$ such that the following conditions hold.
$-0 \leq a_{1}<a_{2}<\cdots<a_{200} \leq 202$.

- There exists a positive integer N with the following property: for every index $i \in\{1, \ldots, 200\}$ there exists an index $j \in\{1, \ldots, 200\}$ such that $a_{i}+a_{j}-N$ is divisible by 203.

5 Let a, b, c be positive real numbers such that $a+b+c=10$ and $a b+b c+c a=25$. Let $m=$ $\min \{a b, b c, c a\}$. Find the largest possible value of m.

6 Let a, b, c, d, e be nonnegative integers such that $625 a+250 b+100 c+40 d+16 e=15^{3}$. What is the maximum possible value of $a+b+c+d+e$?

7 Suppose ($a_{1}, a_{2}, a_{3}, a_{4}$) is a 4-term sequence of real numbers satisfying the following two conditions:

- $a_{3}=a_{2}+a_{1}$ and $a_{4}=a_{3}+a_{2} ;$
- there exist real numbers a, b, c such that

$$
a n^{2}+b n+c=\cos \left(a_{n}\right)
$$

for all $n \in\{1,2,3,4\}$.
Compute the maximum possible value of

$$
\cos \left(a_{1}\right)-\cos \left(a_{4}\right)
$$

over all such sequences $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$.
8 Find the number of ordered pairs of integers $(a, b) \in\{1,2, \ldots, 35\}^{2}$ (not necessarily distinct) such that $a x+b$ is a "quadratic residue modulo $x^{2}+1$ and 35 ", i.e. there exists a polynomial $f(x)$ with integer coefficients such that either of the following equivalent conditions holds:

- there exist polynomials P, Q with integer coefficients such that $f(x)^{2}-(a x+b)=\left(x^{2}+\right.$ 1) $P(x)+35 Q(x)$;
- or more conceptually, the remainder when (the polynomial) $f(x)^{2}-(a x+b)$ is divided by (the polynomial) $x^{2}+1$ is a polynomial with integer coefficients all divisible by 35 .

9 Let $N=30^{2015}$. Find the number of ordered 4-tuples of integers $(A, B, C, D) \in\{1,2, \ldots, N\}^{4}$ (not necessarily distinct) such that for every integer $n, A n^{3}+B n^{2}+2 C n+D$ is divisible by N.

10 Find all ordered 4-tuples of integers (a, b, c, d) (not necessarily distinct) satisfying the following system of equations:

$$
\begin{aligned}
a^{2}-b^{2}-c^{2}-d^{2} & =c-b-2 \\
2 a b & =a-d-32 \\
2 a c & =28-a-d \\
2 a d & =b+c+31 .
\end{aligned}
$$

- Geometry

1 Let R be the rectangle in the Cartesian plane with vertices at $(0,0),(2,0),(2,1)$, and $(0,1) . R$ can be divided into two unit squares, as shown.

Pro selects a point P at random in the interior of R. Find the probability that the line through P with slope $\frac{1}{2}$ will pass through both unit squares.

2 Let $A B C$ be a triangle with orthocenter H; suppose $A B=13, B C=14, C A=15$. Let G_{A} be the centroid of triangle $H B C$, and define G_{B}, G_{C} similarly. Determine the area of triangle $G_{A} G_{B} G_{C}$.

3 Let $A B C D$ be a quadrilateral with $\angle B A D=\angle A B C=90^{\circ}$, and suppose $A B=B C=1$, $A D=2$. The circumcircle of $A B C$ meets $\overline{A D}$ and $\overline{B D}$ at point E and F, respectively. If lines $A F$ and $C D$ meet at K, compute $E K$.

4 Let $A B C D$ be a cyclic quadrilateral with $A B=3, B C=2, C D=2, D A=4$. Let lines perpendicular to $\overline{B C}$ from B and C meet $\overline{A D}$ at B^{\prime} and C^{\prime}, respectively. Let lines perpendicular to $\overline{B C}$ from A and D meet $\overline{A D}$ at A^{\prime} and D^{\prime}, respectively. Compute the ratio $\frac{\left[B C C^{\prime} B^{\prime}\right]}{\left[D A A^{\prime} D^{\prime}\right]}$, where $[\bar{\omega}]$ denotes the area of figure $\bar{\omega}$.

5 Let I be the set of points (x, y) in the Cartesian plane such that

$$
x>\left(\frac{y^{4}}{9}+2015\right)^{1 / 4}
$$

Let $f(r)$ denote the area of the intersection of I and the disk $x^{2}+y^{2} \leq r^{2}$ of radius $r>0$ centered at the origin $(0,0)$. Determine the minimum possible real number L such that $f(r)<$ $L r^{2}$ for all $r>0$.

6 In triangle $A B C, A B=2, A C=1+\sqrt{5}$, and $\angle C A B=54^{\circ}$. Suppose D lies on the extension of $A C$ through C such that $C D=\sqrt{5}-1$. If M is the midpoint of $B D$, determine the measure of $\angle A C M$, in degrees.

7 Let $A B C D$ be a square pyramid of height $\frac{1}{2}$ with square base $A B C D$ of side length $A B=12$ (so E is the vertex of the pyramid, and the foot of the altitude from E to $A B C D$ is the center of square $A B C D$). The faces $A D E$ and $C D E$ meet at an acute angle of measure α (so that $0^{\circ}<\alpha<90^{\circ}$. Find $\tan \alpha$.
$8 \quad$ Let S be the set of discs D contained completely in the set $\{(x, y): y<0\}$ (the region below the x-axis) and centered (at some point) on the curve $y=x^{2}-\frac{3}{4}$. What is the area of the union of the elements of S ?

9 Let $A B C D$ be a regular tetrahedron with side length 1 . Let X be the point in the triangle $B C D$ such that $[X B C]=2[X B D]=4[X C D]$, where $[\bar{\omega}]$ denotes the area of figure $\bar{\omega}$. Let Y lie on segment $A X$ such that $2 A Y=Y X$. Let M be the midpoint of $B D$. Let Z be a point on segment $A M$ such that the lines $Y Z$ and $B C$ intersect at some point. Find $\frac{A Z}{Z M}$.

10 Let \mathcal{G} be the set of all points (x, y) in the Cartesian plane such that $0 \leq y \leq 8$ and

$$
(x-3)^{2}+31=(y-4)^{2}+8 \sqrt{y(8-y)} .
$$

There exists a unique line ℓ of negative slope tangent to \mathcal{G} and passing through the point (0,4). Suppose ℓ is tangent to \mathcal{G} at a unique point P. Find the coordinates (α, β) of P.

