

2015 Harvard-MIT Mathematics Tournament

www.artofproblemsolving.com/community/c53934 by djmathman, Wave-Particle

-	Algebra
1	Let Q be a polynomial
	$Q(x) = a_0 + a_1 x + \dots + a_n x^n,$
	where a_0, \ldots, a_n are nonnegative integers. Given that $Q(1) = 4$ and $Q(5) = 152$, find $Q(6)$.
2	The fraction $\frac{1}{2015}$ has a unique "(restricted) partial fraction decomposition" of the form
	$\frac{1}{2015} = \frac{a}{5} + \frac{b}{13} + \frac{c}{31},$
	where a , b , and c are integers with $0 \le a < 5$ and $0 \le b < 13$. Find $a + b$.
3	Let p be a real number and $c \neq 0$ such that
	$c - 0.1 < x^p \left(\frac{1 - (1 + x)^{10}}{1 + (1 + x)^{10}} \right) < c + 0.1$
	for all (positive) real numbers x with $0 < x < 10^{-100}$. (The exact value 10^{-100} is not important. You could replace it with any "sufficiently small number".)
	Find the ordered pair (p, c) .
4	Compute the number of sequences of integers (a_1, \ldots, a_{200}) such that the following conditions hold.
	$-0 \le a_1 < a_2 < \cdots < a_{200} \le 202.$ - There exists a positive integer N with the following property: for every index $i \in \{1, \dots, 200\}$ there exists an index $j \in \{1, \dots, 200\}$ such that $a_i + a_j - N$ is divisible by 203.
5	Let a, b, c be positive real numbers such that $a + b + c = 10$ and $ab + bc + ca = 25$. Let $m = min\{ab, bc, ca\}$. Find the largest possible value of m .
6	Let a, b, c, d, e be nonnegative integers such that $625a + 250b + 100c + 40d + 16e = 15^3$. What is the maximum possible value of $a + b + c + d + e$?

2015 Harvard-MIT Mathematics Tournament

7 Suppose (a_1, a_2, a_3, a_4) is a 4-term sequence of real numbers satisfying the following two conditions:

 $-a_3 = a_2 + a_1$ and $a_4 = a_3 + a_2$;

- there exist real numbers a, b, c such that

$$an^2 + bn + c = \cos(a_n)$$

for all $n \in \{1, 2, 3, 4\}$.

Compute the maximum possible value of

 $\cos(a_1) - \cos(a_4)$

over all such sequences (a_1, a_2, a_3, a_4) .

8 Find the number of ordered pairs of integers $(a, b) \in \{1, 2, ..., 35\}^2$ (not necessarily distinct) such that ax + b is a "quadratic residue modulo $x^2 + 1$ and 35", i.e. there exists a polynomial f(x) with integer coefficients such that either of the following *equivalent* conditions holds:

- there exist polynomials P, Q with integer coefficients such that $f(x)^2 - (ax + b) = (x^2 + 1)P(x) + 35Q(x)$;

- or more conceptually, the remainder when (the polynomial) $f(x)^2 - (ax + b)$ is divided by (the polynomial) $x^2 + 1$ is a polynomial with integer coefficients all divisible by 35.

- 9 Let $N = 30^{2015}$. Find the number of ordered 4-tuples of integers $(A, B, C, D) \in \{1, 2, ..., N\}^4$ (not necessarily distinct) such that for every integer n, $An^3 + Bn^2 + 2Cn + D$ is divisible by N.
- **10** Find all ordered 4-tuples of integers (*a*, *b*, *c*, *d*) (not necessarily distinct) satisfying the following system of equations:

$$a^{2} - b^{2} - c^{2} - d^{2} = c - b - 2$$

$$2ab = a - d - 32$$

$$2ac = 28 - a - d$$

$$2ad = b + c + 31.$$

Geometry

1 Let R be the rectangle in the Cartesian plane with vertices at (0,0), (2,0), (2,1), and (0,1). R can be divided into two unit squares, as shown.

2015 Harvard-MIT Mathematics Tournament

Pro selects a point *P* at random in the interior of *R*. Find the probability that the line through *P* with slope $\frac{1}{2}$ will pass through both unit squares.

- **2** Let ABC be a triangle with orthocenter H; suppose AB = 13, BC = 14, CA = 15. Let G_A be the centroid of triangle HBC, and define G_B , G_C similarly. Determine the area of triangle $G_A G_B G_C$.
- **3** Let ABCD be a quadrilateral with $\angle BAD = \angle ABC = 90^{\circ}$, and suppose AB = BC = 1, AD = 2. The circumcircle of ABC meets \overline{AD} and \overline{BD} at point E and F, respectively. If lines AF and CD meet at K, compute EK.
- **4** Let ABCD be a cyclic quadrilateral with AB = 3, BC = 2, CD = 2, DA = 4. Let lines perpendicular to \overline{BC} from B and C meet \overline{AD} at B' and C', respectively. Let lines perpendicular to \overline{BC} from A and D meet \overline{AD} at A' and D', respectively. Compute the ratio $\frac{[BCC'B']}{[DAA'D']}$, where $[\overline{\omega}]$ denotes the area of figure $\overline{\omega}$.
- **5** Let *I* be the set of points (x, y) in the Cartesian plane such that

$$x > \left(\frac{y^4}{9} + 2015\right)^{1/4}$$

Let f(r) denote the area of the intersection of I and the disk $x^2 + y^2 \le r^2$ of radius r > 0 centered at the origin (0,0). Determine the minimum possible real number L such that $f(r) < Lr^2$ for all r > 0.

- 6 In triangle *ABC*, AB = 2, $AC = 1 + \sqrt{5}$, and $\angle CAB = 54^{\circ}$. Suppose *D* lies on the extension of *AC* through *C* such that $CD = \sqrt{5} 1$. If *M* is the midpoint of *BD*, determine the measure of $\angle ACM$, in degrees.
- 7 Let ABCD be a square pyramid of height $\frac{1}{2}$ with square base ABCD of side length AB = 12(so *E* is the vertex of the pyramid, and the foot of the altitude from *E* to ABCD is the center of square ABCD). The faces ADE and CDE meet at an acute angle of measure α (so that $0^{\circ} < \alpha < 90^{\circ}$). Find $\tan \alpha$.
- 8 Let S be the set of **discs** D contained completely in the set $\{(x, y) : y < 0\}$ (the region below the x-axis) and centered (at some point) on the curve $y = x^2 \frac{3}{4}$. What is the area of the union of the elements of S?

2015 Harvard-MIT Mathematics Tournament

9 Let ABCD be a regular tetrahedron with side length 1. Let X be the point in the triangle BCDsuch that [XBC] = 2[XBD] = 4[XCD], where $[\overline{\omega}]$ denotes the area of figure $\overline{\omega}$. Let Y lie on segment AX such that 2AY = YX. Let M be the midpoint of BD. Let Z be a point on segment AM such that the lines YZ and BC intersect at some point. Find $\frac{AZ}{ZM}$.

10 Let \mathcal{G} be the set of all points (x, y) in the Cartesian plane such that $0 \le y \le 8$ and

$$(x-3)^2 + 31 = (y-4)^2 + 8\sqrt{y(8-y)}$$

There exists a unique line ℓ of **negative slope** tangent to \mathcal{G} and passing through the point (0, 4). Suppose ℓ is tangent to \mathcal{G} at a **unique** point *P*. Find the coordinates (α, β) of *P*.

Act of Problem Solving is an ACS WASC Accredited School.