AoPS Community

ITAMO 2005
www.artofproblemsolving.com/community/c5395
by parmenides51, Sayan

Day 1

1 Let $A B C$ be a right angled triangle with hypotenuse $A C$, and let H be the foot of the altitude from B to $A C$. Knowing that there is a right-angled triangle with side-lengths $A B, B C, B H$, determine all the possible values of $\frac{A H}{C H}$.

2 Prove that among any 18 consecutive positive integers not exceeding 2005 there is at least one divisible by the sum of its digits.

3 In each cell of a 4×4 table a digit 1 or 2 is written. Suppose that the sum of the digits in each of the four 3×3 sub-tables is divisible by 4 , but the sum of the digits in the entire table is not divisible by 4 . Find the greatest and the smallest possible value of the sum of the 16 digits.

Day 2

1 Determine all $n \geq 3$ for which there are n positive integers a_{1}, \cdots, a_{n} any two of which have a common divisor greater than 1, but any three of which are coprime. Assuming that, moreover, the numbers a_{i} are less than 5000 , find the greatest possible n.

2 Let h be a positive integer. The sequence a_{n} is defined by $a_{0}=1$ and

$$
a_{n+1}=\left\{\begin{array}{c}
\frac{a_{n}}{2} \text { if } a_{n} \text { is even } \\
a_{n}+h \text { otherwise } .
\end{array}\right.
$$

For example, $h=27$ yields $a_{1}=28, a_{2}=14, a_{3}=7, a_{4}=34$ etc. For which h is there an $n>0$ with $a_{n}=1$?

3 Two circles γ_{1}, γ_{2} in a plane, with centers A and B respectively, intersect at C and D. Suppose that the circumcircle of $A B C$ intersects γ_{1} in E and γ_{2} in F, where the arc $E F$ not containing C lies outside γ_{1} and γ_{2}. Prove that this arc $E F$ is bisected by the line $C D$.

