AOPS Online

AoPS Community

2007 ITAMO

ITAMO 2007

www.artofproblemsolving.com/community/c5397 by edriv

Day 1	
1	It is given a regular hexagon in the plane. Let P be a point of the plane. Define s(P) as the sum of the distances from P to each side of the hexagon, and v(P) as the sum of the distances from P to each vertex. a) Find the locus of points P that minimize s(P) b) Find the locus of points P that minimize v(P)
2	We define two polynomials with integer coefficients P,Q to be similar if the coefficients of P are a permutation of the coefficients of Q. a) if P,Q are similar, then $P(2007) - Q(2007)$ is even b) does there exist an integer $k > 2$ such that $k \mid P(2007) - Q(2007)$ for all similar polynomials P,Q?
3	Let ABC be a triangle, G its centroid, M the midpoint of AB, D the point on the line AG such that $AG = GD, A \neq D$, E the point on the line BG such that $BG = GE, B \neq E$. Show that the quadrilateral BDCM is cyclic if and only if $AD = BE$.
Day 2	
4	Today is Barbara's birthday, and Alberto wants to give her a gift playing the following game. The numbers 0,1,2,,1024 are written on a blackboard. First Barbara erases 2^9 numbers, then Alberto erases 2^8 numbers, then Barbara 2^7 and so on, until there are only two numbers a,b left. Now Barbara earns $ a - b $ euro. Find the maximum number of euro that Barbara can always win, independently of Alberto's strategy.
5	The sequence of integers $(a_n)_{n\geq 1}$ is defined by $a_1 = 2$, $a_{n+1} = 2a_n^2 - 1$. Prove that for each positive integer n, n and a_n are coprime.
6	a) For each $n \ge 2$, find the maximum constant c_n such that $\frac{1}{a_1+1} + \frac{1}{a_2+1} + \ldots + \frac{1}{a_n+1} \ge c_n$ for all positive reals a_1, a_2, \ldots, a_n such that $a_1a_2 \cdots a_n = 1$.
	b) For each $n \ge 2$, find the maximum constant d_n such that $\frac{1}{2a_1+1} + \frac{1}{2a_2+1} + \ldots + \frac{1}{2a_n+1} \ge d_n$ for all positive reals a_1, a_2, \ldots, a_n such that $a_1a_2 \cdots a_n = 1$.

Art of Problem Solving is an ACS WASC Accredited School.