Art of Problem Solving

AoPS Community

ITAMO 2007

www.artofproblemsolving.com/community/c5397
by edriv

Day 1

1 It is given a regular hexagon in the plane. Let P be a point of the plane. Define $s(P)$ as the sum of the distances from P to each side of the hexagon, and $v(P)$ as the sum of the distances from P to each vertex.
a) Find the locus of points P that minimize $s(P)$
b) Find the locus of points P that minimize $v(P)$

2 We define two polynomials with integer coefficients P, Q to be similar if the coefficients of P are a permutation of the coefficients of Q .
a) if P, Q are similar, then $P(2007)-Q(2007)$ is even
b) does there exist an integer $k>2$ such that $k \mid P(2007)-Q(2007)$ for all similar polynomials P, Q ?

3 Let ABC be a triangle, G its centroid, M the midpoint of AB, D the point on the line $A G$ such that $A G=G D, A \neq D, \mathrm{E}$ the point on the line $B G$ such that $B G=G E, B \neq E$. Show that the quadrilateral BDCM is cyclic if and only if $A D=B E$.

Day 2

4 Today is Barbara's birthday, and Alberto wants to give her a gift playing the following game. The numbers $0,1,2, \ldots, 1024$ are written on a blackboard. First Barbara erases 2^{9} numbers, then Alberto erases 2^{8} numbers, then Barbara 2^{7} and so on, until there are only two numbers a,b left. Now Barbara earns $|a-b|$ euro.
Find the maximum number of euro that Barbara can always win, independently of Alberto's strategy.
$5 \quad$ The sequence of integers $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=2, a_{n+1}=2 a_{n}^{2}-1$.
Prove that for each positive integer n, n and a_{n} are coprime.
6 a) For each $n \geq 2$, find the maximum constant c_{n} such that $\frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\ldots+\frac{1}{a_{n}+1} \geq c_{n}$ for all positive reals $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{1} a_{2} \cdots a_{n}=1$.
b) For each $n \geq 2$, find the maximum constant d_{n} such that $\frac{1}{2 a_{1}+1}+\frac{1}{2 a_{2}+1}+\ldots+\frac{1}{2 a_{n}+1} \geq d_{n}$ for all positive reals $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{1} a_{2} \cdots a_{n}=1$.

