Art of Problem Solving

AoPS Community

ITAMO 2009
www.artofproblemsolving.com/community/c5399
by Sayan

Day 1

1 Let $a<b<c<d<e$ be real numbers. We calculate all possible sums in pairs of these 5 numbers. Of these 10 sums, the three smaller ones are 32,36,37, while the two larger ones are 48 and 51 . Determine all possible values that e can take.
$2 A B C D$ is a square with centre O. Two congruent isosceles triangle $B C J$ and $C D K$ with base $B C$ and $C D$ respectively are constructed outside the square. let M be the midpoint of $C J$. Show that $O M$ and $B K$ are perpendicular to each other.

3 A natural number n is called nice if it enjoys the following properties:
The expression is made up of 4 decimal digits;
the first and third digits of n are equal;
the second and fourth digits of n are equal;
the product of the digits of n divides n^{2}.
Determine all nice numbers.

Day 2

1 A flea is initially at the point $(0,0)$ in the Cartesian plane. Then it makes n jumps. The direction of the jump is taken in a choice of the four cardinal directions. The first step is of length 1 , the second of length 2 , the third of length 4 , and so on. The $n^{t h}$-jump is of length 2^{n-1}. Prove that, if you know the final position flea, then it is possible to uniquely determine its position after each of the n jumps.

2 Let $A B C$ be an acute-angled scalene triangle and Γ be its circumcircle. K is the foot of the internal bisector of $\angle B A C$ on $B C$. Let M be the midpoint of the arc $B C$ containing A. $M K$ intersect Γ again at $A^{\prime} . T$ is the intersection of the tangents at A and $A^{\prime} . R$ is the intersection of the perpendicular to $A K$ at A and perpendicular to $A^{\prime} K$ at A^{\prime}. Show that T, R and K are collinear.

3 A natural number k is said n-squared if by colouring the squares of a $2 n \times k$ chessboard, in any manner, with n different colours, we can find 4 separate unit squares of the same colour, the centers of which are vertices of a rectangle having sides parallel to the sides of the board. Determine, in function of n, the smallest natural k that is n-squared.

