AoPS Community

Nordic 1996

www.artofproblemsolving.com/community/c540366
by parmenides51

1 Show that there exists an integer divisible by 1996 such that the sum of the its decimal digits is 1996.

2 Determine all real numbers x, such that $x^{n}+x^{-n}$ is an integer for all integers n.
3 The circle whose diameter is the altitude dropped from the vertex A of the triangle $A B C$ intersects the sides $A B$ and $A C$ at D and E, respectively $(A \neq D, A \neq E)$. Show that the circumcenter of $A B C$ lies on the altitude drawn from the vertex A of the triangle $A D E$, or on its extension.

4 The real-valued function f is defined for positive integers, and the positive integer a satisfies $f(a)=f(1995), f(a+1)=f(1996), f(a+2)=f(1997), f(n+a)=\frac{f(n)-1}{f(n)+1}$ for all positive integers n.
(i) Show that $f(n+4 a)=f(n)$ for all positive integers n.
(ii) Determine the smallest possible a.

