AoPS Community

Nordic 1997

www.artofproblemsolving.com/community/c540367
by parmenides51

1 Let A be a set of seven positive numbers. Determine the maximal number of triples (x, y, z) of elements of A
satisfying $x<y$ and $x+y=z$.
2 Let $A B C D$ be a convex quadrilateral. We assume that there exists a point P inside the quadrilateral such that
the areas of the triangles $A B P, B C P, C D P$, and $D A P$ are equal. Show that at least one of the diagonals of the quadrilateral bisects the other diagonal.

3 Let A, B, C, and D be four different points in the plane. Three of the line segments $A B, A C, A D, B C, B D$, and $C D$ have length a. The other three have length b, where $b>a$. Determine all possible values of the quotient $\frac{b}{a}$.

4 Let f be a function defined in the set $\{0,1,2, \ldots\}$ of non-negative integers, satisfying $f(2 x)=$ $2 f(x), f(4 x+1)=4 f(x)+3$, and $f(4 x-1)=2 f(2 x-1)-1$.
Show that f is an injection, i.e. if $f(x)=f(y)$, then $x=y$.

