AoPS Online

AoPS Community

ITAMO 2014

www.artofproblemsolving.com/community/c5404

by Sayan

-	May 9th
1	For every 3-digit natural number n (leading digit of n is nonzero), we consider the number n_0 obtained from n eliminating all possible digits that are zero. For example, if $n = 207$, then $n_0 = 27$. Determine the number of three-digit positive integers n , for which n_0 is a divisor of n different from n .
2	Let ABC be a triangle. Let H be the foot of the altitude from C on AB . Suppose that $AH = 3HB$. Suppose in addition we are given that
	(a) <i>M</i> is the midpoint of <i>AB</i> ; (b) <i>N</i> is the midpoint of <i>AC</i> ; (c) <i>P</i> is a point on the opposite side of <i>B</i> with respect to the line <i>AC</i> such that $NP = NC$ and $PC = CB$.
	Prove that $\angle APM = \angle PBA$.
3	For any positive integer <i>n</i> , let D_n denote the greatest common divisor of all numbers of the form $a^n + (a+1)^n + (a+2)^n$ where <i>a</i> varies among all positive integers.
	(a) Prove that for each n , D_n is of the form 3^k for some integer $k \ge 0$. (b) Prove that, for all $k \ge 0$, there exists an integer n such that $D_n = 3^k$.
4	Let ω be a circle with center A and radius R . On the circumference of ω four distinct points B, C, G, H are taken in that order in such a way that G lies on the extended B -median of the triangle ABC , and H lies on the extension of altitude of ABC from B . Let X be the intersection of the straight lines AC and GH . Show that the segment AX has length $2R$.
5	Prove that there exists a positive integer that can be written, in at least two ways, as a sum of 2014-th powers of 2015 distinct positive integers $x_1 < x_2 < \cdots < x_{2015}$.
6	A $(2n + 1) \times (2n + 1)$ grid, with $n > 0$, is colored in such a way that each of the cell is white or black. A cell is called <i>special</i> if there are at least n other cells of the same color in its row, and at least another n cells of the same color in its column.
	(a) Prove that there are at least $2n + 1$ special boxes. (b) Provide an example where there are at most $4n$ special cells. (c) Determine, as a function of n , the minimum possible number of special cells.