AoPS Community

Hong kong National Olympiad 1998

www.artofproblemsolving.com/community/c5405
by Issl

1 In a concyclic quadrilateral $P Q R S, \angle P S R=\frac{\pi}{2}, H, K$ are perpendicular foot from Q to sides $P R, R S$, prove that $H K$ bisect segment $S Q$.

2 The underside of a pyramid is a convex nonagon, paint all the diagonals of the nonagon and all the ridges of the pyramid into white and black, prove : there exists a triangle , the colour of its three sides are the same. (PS:the sides of the nonagon is not painted.)

3 Given s, t are non-zero integers, (x, y) is an integer pair, A transformation is to change pair (x, y) into pair $(x+t, y-s)$. If the two integers in a certain pair becoems relatively prime after several tranfomations, then we call the original integer pair "a good pair".
(1) Is (s, t) a good pair?
(2) Prove :for any s and t, there exists pair (x, y) which is " a good pair".

4 Define a function f on positive real numbers to satisfy

$$
f(1)=1, f(x+1)=x f(x) \text { and } f(x)=10^{g(x)},
$$

where $g(x)$ is a function defined on real numbers and for all real numbers y, z and $0 \leq t \leq 1$, it satisfies

$$
g(t y+(1-t) z) \leq t g(y)+(1-t) g(z) .
$$

(1) Prove: for any integer n and $0 \leq t \leq 1$, we have

$$
t[g(n)-g(n-1)] \leq g(n+t)-g(n) \leq t[g(n+1)-g(n)] .
$$

(2) Prove that

$$
\frac{4}{3} \leq f\left(\frac{1}{2}\right) \leq \frac{4}{3} \sqrt{2}
$$

