AoPS Community

Hong kong National Olympiad 2000

www.artofproblemsolving.com/community/c5407
by WakeUp, mps

1 Let O be the circumcentre of a triangle $A B C$ with $A B>A C>B C$. Let D be a point on the minor arc $B C$ of the circumcircle and let E and F be points on $A D$ such that $A B \perp O E$ and $A C \perp O F$. The lines $B E$ and $C F$ meet at P. Prove that if $P B=P C+P O$, then $\angle B A C=30^{\circ}$.

2 Define $a_{1}=1$ and $a_{n+1}=\frac{a_{n}}{n}+\frac{n}{a_{n}}$ for $n \in \mathbb{N}$. Find the greatest integer not exceeding a_{2000} and prove your claim.

3 Find all prime numbers p and q such that $\frac{\left(7^{p}-2^{p}\right)\left(7^{q}-2^{q}\right)}{p q}$ is an integer.
4 Find all positive integers $n \geq 3$ such that there exists an n-gon with vertices on lattice points of the coordinate plane and all sides of equal length.

