

AoPS Community

2000 Hong kong National Olympiad

Hong kong National Olympiad 2000

www.artofproblemsolving.com/community/c5407 by WakeUp, mps

- 1 Let *O* be the circumcentre of a triangle *ABC* with AB > AC > BC. Let *D* be a point on the minor arc *BC* of the circumcircle and let *E* and *F* be points on *AD* such that $AB \perp OE$ and $AC \perp OF$. The lines *BE* and *CF* meet at *P*. Prove that if PB = PC + PO, then $\angle BAC = 30^{\circ}$.
- **2** Define $a_1 = 1$ and $a_{n+1} = \frac{a_n}{n} + \frac{n}{a_n}$ for $n \in \mathbb{N}$. Find the greatest integer not exceeding a_{2000} and prove your claim.
- **3** Find all prime numbers p and q such that $\frac{(7^p-2^p)(7^q-2^q)}{pq}$ is an integer.
- **4** Find all positive integers $n \ge 3$ such that there exists an *n*-gon with vertices on lattice points of the coordinate plane and all sides of equal length.

