AoPS Community

Hong kong National Olympiad 2001

www.artofproblemsolving.com/community/c5408
by N.T.TUAN
$1 \quad$ A triangle $A B C$ is given. A circle Γ, passing through A, is tangent to side $B C$ at point P and intersects sides $A B$ and $A C$ at M and N respectively. Prove that the smaller arcs $M P$ and $N P$ of Γ are equal iff Γ is tangent to the circumcircle of $\triangle A B C$ at A.

2 Find, with proof, all positive integers n such that the equation $x^{3}+y^{3}+z^{3}=n x^{2} y^{2} z^{2}$ has a solution in positive integers.
$3 \quad$ Let $k \geq 4$ be an integer number. $P(x) \in \mathbb{Z}[x]$ such that $0 \leq P(c) \leq k$ for all $c=0,1, \ldots, k+1$. Prove that $P(0)=P(1)=\ldots=P(k+1)$.

4 There are 212 points inside or on a given unit circle. Prove that there are at least 2001 pairs of points having distances at most 1 .

