

AoPS Community

2001 Hong kong National Olympiad

Hong kong National Olympiad 2001

www.artofproblemsolving.com/community/c5408 by N.T.TUAN

- **1** A triangle ABC is given. A circle Γ , passing through A, is tangent to side BC at point P and intersects sides AB and AC at M and N respectively. Prove that the smaller arcs MP and NP of Γ are equal iff Γ is tangent to the circumcircle of ΔABC at A.
- **2** Find, with proof, all positive integers n such that the equation $x^3 + y^3 + z^3 = nx^2y^2z^2$ has a solution in positive integers.
- **3** Let $k \ge 4$ be an integer number. $P(x) \in \mathbb{Z}[x]$ such that $0 \le P(c) \le k$ for all c = 0, 1, ..., k + 1. Prove that P(0) = P(1) = ... = P(k + 1).
- 4 There are 212 points inside or on a given unit circle. Prove that there are at least 2001 pairs of points having distances at most 1.

