AoPS Community

Hong kong National Olympiad 2002

www.artofproblemsolving.com/community/c5409
by WakeUp, N.T.TUAN

1 Two circles meet at points A and B. A line through B intersects the first circle again at K and the second circle at M. A line parallel to $A M$ is tangent to the first circle at Q. The line $A Q$ intersects the second circle again at R.
(a) Prove that the tangent to the second circle at R is parallel to $A K$. (b) Prove that these two tangents meet on $K M$.

2 In conference there $n>2$ mathematicians. Every two mathematicians communicate in one of the n offical languages of the conference. For any three different offical languages the exists three mathematicians who communicate with each other in these three languages. Find all n such that this is possible.

3 Let $a \geq b \geq c \geq 0$ are real numbers such that $a+b+c=3$. Prove that $a b^{2}+b c^{2}+c a^{2} \leq \frac{27}{8}$ and find cases of equality.

4 Let p be a prime number such that $p \equiv 1(\bmod 4)$. Determine $\sum_{k=1}^{\frac{p-1}{2}}\left\{\frac{k^{2}}{p}\right\}$, where $\{x\}=x-[x]$.

