AoPS Community

Hong kong National Olympiad 2003

www.artofproblemsolving.com/community/c5410
by N.T.TUAN, WakeUp

1 Find the greatest real number K such that for all positive real number u, v, w with $u^{2}>4 v w$ we have $\left(u^{2}-4 v w\right)^{2}>K\left(2 v^{2}-u w\right)\left(2 w^{2}-u v\right)$

2 Let $A B C D E F$ regular hexagon of side length 1 and O is its center. In addition to the sides of the hexagon, line segments from O to the every vertex are drawn, making as total of 12 unit segments. Find the number paths of length 2003 along these segments that star at O and terminate at O.

3 Let K, L, M, N be the midpoints of sides $A B, B C, C D, D A$ of a cyclic quadrilateral $A B C D$. Prove that the orthocentres of triangles $A N K, B K L, C L M, D M N$ are the vertices of a parallelogram.

4 Find all integer numbers a, b, c such that $\frac{(a+b)(b+c)(c+a)}{2}+(a+b+c)^{3}=1-a b c$.

