AoPS Community

Hong kong National Olympiad 2006

www.artofproblemsolving.com/community/c5413
by WakeUp, davidlam

1 A subset M of $\{1,2, \ldots, 2006\}$ has the property that for any three elements x, y, z of M with $x<y<z, x+y$ does not divide z. Determine the largest possible size of M.

2 For a positive integer k, let $f_{1}(k)$ be the square of the sum of the digits of k. Define $f_{n+1}=f_{1} \circ f_{n}$. Evaluate $f_{2007}\left(2^{2006}\right)$.

3 A convex quadrilateral $A B C D$ with $A C \neq B D$ is inscribed in a circle with center O. Let E be the intersection of diagonals $A C$ and $B D$. If P is a point inside $A B C D$ such that $\angle P A B+\angle P C B=$ $\angle P B C+\angle P D C=90^{\circ}$, prove that O, P and E are collinear.

4 Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of positive numbers. If there is a constant $M>0$ such that $a_{2}^{2}+a_{2}^{2}+$ $\ldots+a_{n}^{2}<M a_{n+1}^{2}$ for all n, then prove that there is a constant $M^{\prime}>0$ such that $a_{1}+a_{2}+\ldots+a_{n}<$ $M^{\prime} a_{n+1}$.

