AoPS Community

Hong kong National Olympiad 2008

www.artofproblemsolving.com/community/c5415
by brianchung 11

1 Let $f(x)=c_{m} x^{m}+c_{m-1} x^{m-1}+\ldots+c_{1} x+c_{0}$, where each c_{i} is a non-zero integer. Define a sequence $\left\{a_{n}\right\}$ by $a_{1}=0$ and $a_{n+1}=f\left(a_{n}\right)$ for all positive integers n.
(a) Let i and j be positive integers with $i<j$. Show that $a_{j+1}-a_{j}$ is a multiple of $a_{i+1}-a_{i}$.
(b) Show that $a_{2008} \neq 0$

2 Let $n>4$ be a positive integer such that n is composite (not a prime) and divides $\varphi(n) \sigma(n)+1$, where $\varphi(n)$ is the Euler's totient function of n and $\sigma(n)$ is the sum of the positive divisors of n. Prove that n has at least three distinct prime factors.
$3 \Delta A B C$ is a triangle such that $A B \neq A C$. The incircle of $\triangle A B C$ touches $B C, C A, A B$ at D, E, F respectively. H is a point on the segment $E F$ such that $D H \perp E F$. Suppose $A H \perp B C$, prove that H is the orthocentre of $\triangle A B C$.

Remark: the original question has missed the condition $A B \neq A C$
4 There are 2008 congruent circles on a plane such that no two are tangent to each other and each circle intersects at least three other circles. Let N be the total number of intersection points of these circles. Determine the smallest possible values of N.

