AoPS Community

Hong kong National Olympiad 2010

www.artofproblemsolving.com/community/c5417
by horizon

1 Let $A B C$ be an arbitrary triangle. A regular n-gon is constructed outward on the three sides of $\triangle A B C$. Find all n such that the triangle formed by the three centres of the n-gons is equilateral.

2 Let n be a positive integer. Find the number of sequences $x_{1}, x_{2}, \ldots x_{2 n-1}, x_{2 n}$, where $x_{i} \in$ $\{-1,1\}$ for each i, satisfying the following condition: for any integer k and m such that $1 \leq$ $k \leq m \leq n$ then the following inequality holds

$$
\left|\sum_{i=2 k-1}^{2 m} x_{i}\right| \leq 2
$$

3 Let n be a positive integer. Let a be an integer such that $\operatorname{gcd}(a, n)=1$. Prove that

$$
\frac{a^{\phi(n)}-1}{n}=\sum_{i \in R} \frac{1}{a i}\left[\frac{a i}{n}\right] \quad(\bmod n)
$$

where R is the reduced residue system of n with each element a positive integer at most n.

