AoPS Community

Hong kong National Olympiad 2013

www.artofproblemsolving.com/community/c5418
by WakeUp

- December 14th

1 Let a, b, c be positive real numbers such that $a b+b c+c a=1$. Prove that

$$
\sqrt[4]{\frac{\sqrt{3}}{a}+6 \sqrt{3} b}+\sqrt[4]{\frac{\sqrt{3}}{b}+6 \sqrt{3} c}+\sqrt[4]{\frac{\sqrt{3}}{c}+6 \sqrt{3} a} \leq \frac{1}{a b c}
$$

When does inequality hold?
2 For any positive integer a, define $M(a)$ to be the number of positive integers b for which $a+b$ divides $a b$. Find all integer(s) a with $1 \leq a \leq 2013$ such that $M(a)$ attains the largest possible value in the range of a.

3 Let $A B C$ be a triangle with $C A>B C>A B$. Let O and H be the circumcentre and orthocentre of triangle $A B C$ respectively. Denote by D and E the midpoints of the arcs $A B$ and $A C$ of the circumcircle of triangle $A B C$ not containing the opposite vertices. Let D^{\prime} be the reflection of D about $A B$ and E^{\prime} the reflection of E about $A C$. Prove that $O, H, D^{\prime}, E^{\prime}$ are concylic if and only if $A, D^{\prime}, E^{\prime}$ are collinear.

4 In a chess tournament there are $n>2$ players. Every two players play against each other exactly once. It is known that exactly n games end as a tie. For any set S of players, including A and B, we say that A admires B in that set if
i) A does not beat B; or
ii) there exists a sequence of players $C_{1}, C_{2}, \ldots, C_{k}$ in S, such that A does not beat C_{1}, C_{k} does not beat B, and C_{i} does not beat C_{i+1} for $1 \leq i \leq k-1$.
A set of four players is said to be harmonic if each of the four players admires everyone else in the set. Find, in terms of n, the largest possible number of harmonic sets.

