Art of Problem Solving

AoPS Community

Hong kong Team Selection Test 1994

www.artofproblemsolving.com/community/c5419
by Sowmitra

Day 1

1 In a $\triangle A B C, \angle C=2 \angle B . P$ is a point in the interior of $\triangle A B C$ satisfying that $A P=A C$ and $P B=P C$. Show that $A P$ trisects the angle $\angle A$.

2 In a table-tennis tournament of 10 contestants, any 2 contestants meet only once.
We say that there is a winning triangle if the following situation occurs: i-th contestant defeated the j-th contestant, j-th contestant defeated the k-th contestant, and, k-th contestant defeated the i-th contestant.
Let, W_{i} and L_{i} be respectively the number of games won and lost by the i-th contestant. Suppose, $L_{i}+W_{j} \geq 8$ whenever the j-th contestant defeats the i-th contestant.
Prove that, there are exactly 40 winning triangles in this tournament.
3 Find all non-negative integers x, y and z satisfying the equation:

$$
7^{x}+1=3^{y}+5^{z}
$$

Day 2

1 Suppose, $x, y, z \in \mathbb{R}_{+}$such that $x y+y z+z x=1$. Prove that,

$$
x\left(1-y^{2}\right)\left(1-z^{2}\right)+y\left(1-z^{2}\right)\left(1-x^{2}\right)+z\left(1-x^{2}\right)\left(1-y^{2}\right) \leq \frac{4 \sqrt{3}}{9}
$$

2 Given that, a function $f(n)$, defined on the natural numbers, satisfies the following conditions:
(i) $f(n)=n-12$ if $n>2000$; (ii) $f(n)=f(f(n+16)$) if $n \leq 2000$.
(a) Find $f(n)$.
(b) Find all solutions to $f(n)=n$.
$3 \quad$ Let m and n be positive integers where m has d digits in base ten and $d \leq n$. Find the sum of all the digits (in base ten) of the product $\left(10^{n}-1\right) m$.

