

AoPS Community

National Olympiad Second Round 1993

www.artofproblemsolving.com/community/c5422 by Umut Varolgunes

- 1 Prove that there is a number such that its decimal representation ends with 1994 and it can be written as $1994 \cdot 1993^n$ ($n \in Z^+$)
- **2** I centered incircle of triangle ABC $(m(\hat{B}) = 90^{\circ})$ touches [AB], [BC], [AC] respectively at F, D, E. $[CI] \cap [EF] = L$ and $[DL] \cap [AB] = N$. Prove that [AI] = [ND].
- **3** $n \in Z^+$ and $A = 1, \ldots, n$. $f : N \to N$ and $\sigma : N \to N$ are two permutations, if there is one $k \in A$ such that $(f \circ \sigma)(1), \ldots, (f \circ \sigma)(k)$ is increasing and $(f \circ \sigma)(k), \ldots, (f \circ \sigma)(n)$ is decreasing sequences we say that f is good for σ . S_{σ} shows the set of good functions for σ . a) Prove that, S_{σ} has got 2^{n-1} elements for every σ permutation. b) $n \ge 4$, prove that there are permutations σ and τ such that, $S_{\sigma} \cap S_{\tau} = \phi$
- 4 a_n is a sequence of positive integers such that, for every $n \ge 1$, $0 < a_{n+1} a_n < \sqrt{a_n}$. Prove that for every $x, y \in R$ such that 0 < x < y < 1 $x < \frac{a_k}{a_m} < y$ we can find such $k, m \in Z^+$.
- **5** Prove that we can draw a line (by a ruler and a compass) from a vertice of a convex quadrilateral such that, the line divides the quadrilateral to two equal areas.
- 6 n_1, \ldots, n_k, a are integers that satisfies the above conditions A)For every $i \neq j$, $(n_i, n_j) = 1$ B)For every $i, a^{n_i} \equiv 1 \pmod{i}$ C)For every $i, X^{a-1} \equiv 0 \pmod{i}$. Prove that $a^x \equiv 1 \pmod{i}$ congruence has at least $2^{k+1} - 2$ solutions. (x > 1)

AoPS Online 🔇 AoPS Academy 🔇 AoPS &