AoPS Community

National Olympiad Second Round 1993

www.artofproblemsolving.com/community/c5422
by Umut Varolgunes

1 Prove that there is a number such that its decimal represantation ends with 1994 and it can be written as $1994 \cdot 1993^{n}\left(n \in Z^{+}\right)$

2 I centered incircle of triangle $A B C\left(m(\hat{B})=90^{\circ}\right)$ touches $[A B],[B C],[A C]$ respectively at $F, D, E .[C I] \cap[E F]=L$ and $[D L] \cap[A B]=N$. Prove that $[A I]=[N D]$.
$3 n \in Z^{+}$and $A=1, \ldots, n . f: N \rightarrow N$ and $\sigma: N \rightarrow N$ are two permutations, if there is one $k \in A$ such that $(f \circ \sigma)(1), \ldots,(f \circ \sigma)(k)$ is increasing and $(f \circ \sigma)(k), \ldots,(f \circ \sigma)(n)$ is decreasing sequences we say that f is good for $\sigma . S_{\sigma}$ shows the set of good functions for σ.
a) Prove that, S_{σ} has got 2^{n-1} elements for every σ permutation.
b) $n \geq 4$, prove that there are permutations σ and τ such that, $S_{\sigma} \cap S_{\tau}=\phi$
$4 a_{n}$ is a sequence of positive integers such that, for every $n \geq 1,0<a_{n+1}-a_{n}<\sqrt{a_{n}}$. Prove that for every $x, y \in R$ such that $0<x<y<1 x<\frac{a_{k}}{a_{m}}<y$ we can find such $k, m \in Z^{+}$.

5 Prove that we can draw a line (by a ruler and a compass) from a vertice of a convex quadrilateral such that, the line divides the quadrilateral to two equal areas.
$6 \quad n_{1}, \ldots, n_{k}, a$ are integers that satisfies the above conditions A)For every $i \neq j,\left(n_{i}, n_{j}\right)=1$ B)For every $i, a^{n_{i}} \equiv 1\left(\operatorname{modn} n_{i}\right)$ C)For every $i, X^{a-1} \equiv 0\left(\operatorname{modn} n_{i}\right)$.

Prove that $a^{x} \equiv 1(\bmod x)$ congruence has at least $2^{k+1}-2$ solutions. $(x>1)$

