AoPS Community

National Olympiad Second Round 1994

www.artofproblemsolving.com/community/c5423
by xeroxia
$1 \quad$ For $n \in \mathbb{N}$, let a_{n} denote the closest integer to \sqrt{n}. Evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n}^{3}} .
$$

2 Let $A B C D$ be a cyclic quadrilateral $\angle B A D<90^{\circ}$ and $\angle B C A=\angle D C A$. Point E is taken on segment $D A$ such that $B D=2 D E$. The line through E parallel to $C D$ intersects the diagonal $A C$ at F. Prove that

$$
\frac{A C \cdot B D}{A B \cdot F C}=2
$$

3 Let n blue lines, no two of which are parallel and no three concurrent, be drawn on a plane. An intersection of two blue lines is called a blue point. Through any two blue points that have not already been joined by a blue line, a red line is drawn. An intersection of two red lines is called a red point, and an intersection of red line and a blue line is called a purple point. What is the maximum possible number of purple points?
$4 \quad$ Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}+$ be an increasing function. For each $u \in \mathbb{R}^{+}$, we denote $g(u)=\inf \{f(t)+u / t \mid$ $t>0\}$. Prove that:
(a) If $x \leq g(x y)$, then $x \leq 2 f(2 y)$;
(b) If $x \leq f(y)$, then $x \leq 2 g(x y)$.

5 Find the set of all ordered pairs (s, t) of positive integers such that

$$
t^{2}+1=s(s+1)
$$

$6 \quad$ The incircle of triangle $A B C$ touches $B C$ at D and $A C$ at E. Let K be the point on $C B$ with $C K=B D$, and L be the point on $C A$ with $A E=C L$. Lines $A K$ and $B L$ meet at P. If Q is the midpoint of $B C, I$ the incenter, and G the centroid of $\triangle A B C$, show that:
(a) $I Q$ and $A K$ are parallel,
(b) the triangles $A I G$ and $Q P G$ have equal area.

