

AoPS Community

National Olympiad Second Round 1994

www.artofproblemsolving.com/community/c5423 by xeroxia

1 For $n \in \mathbb{N}$, let a_n denote the closest integer to \sqrt{n} . Evaluate

$$\sum_{n=1}^{\infty} \frac{1}{a_n^3}.$$

2 Let ABCD be a cyclic quadrilateral $\angle BAD < 90^{\circ}$ and $\angle BCA = \angle DCA$. Point *E* is taken on segment *DA* such that BD = 2DE. The line through *E* parallel to *CD* intersects the diagonal *AC* at *F*. Prove that

 $\frac{AC \cdot BD}{AB \cdot FC} = 2.$

- **3** Let *n* blue lines, no two of which are parallel and no three concurrent, be drawn on a plane. An intersection of two blue lines is called a blue point. Through any two blue points that have not already been joined by a blue line, a red line is drawn. An intersection of two red lines is called a red point, and an intersection of red line and a blue line is called a purple point. What is the maximum possible number of purple points?
- 4 Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be an increasing function. For each $u \in \mathbb{R}^+$, we denote $g(u) = \inf\{f(t) + u/t \mid t > 0\}$. Prove that:

(a) If $x \leq g(xy)$, then $x \leq 2f(2y)$;

- (b) If $x \leq f(y)$, then $x \leq 2g(xy)$.
- **5** Find the set of all ordered pairs (s, t) of positive integers such that

$$t^2 + 1 = s(s+1).$$

- **6** The incircle of triangle ABC touches BC at D and AC at E. Let K be the point on CB with CK = BD, and L be the point on CA with AE = CL. Lines AK and BL meet at P. If Q is the midpoint of BC, I the incenter, and G the centroid of $\triangle ABC$, show that:
 - (a) IQ and AK are parallel,
 - (b) the triangles AIG and QPG have equal area.