

AoPS Community

National Olympiad Second Round 1995

www.artofproblemsolving.com/community/c5424 by xeroxia

1 Let m_1, m_2, \ldots, m_k be integers with $2 \le m_1$ and $2m_1 \le m_{i+1}$ for all *i*. Show that for any integers a_1, a_2, \ldots, a_k there are infinitely many integers *x* which do not satisfy any of the congruences

$$x \equiv a_i \pmod{m_i}, \ i = 1, 2, \dots k.$$

2 Let ABC be an acute triangle and let k_1, k_2, k_3 be the circles with diameters BC, CA, AB, respectively. Let K be the radical center of these circles. Segments AK, CK, BK meet k_1, k_2, k_3 again at D, E, F, respectively. If the areas of triangles ABC, DBC, ECA, FAB are u, x, y, z, respectively, prove that

$$u^2 = x^2 + y^2 + z^2.$$

3 Let *A* be a real number and (a_n) be a sequence of real numbers such that $a_1 = 1$ and

$$1 < \frac{a_{n+1}}{a_n} \le A \text{ for all } n \in \mathbb{N}.$$

(a) Show that there is a unique non-decreasing surjective function $f : \mathbb{N} \to \mathbb{N}$ such that $1 < A^{k(n)}/a_n \leq A$ for all $n \in \mathbb{N}$.

(b) If k takes every value at most m times, show that there is a real number C > 1 such that $Aa_n \ge C^n$ for all $n \in \mathbb{N}$.

- 4 In a triangle ABC with $AB \neq AC$, the internal and external bisectors of angle A meet the line BC at D and E respectively. If the feet of the perpendiculars from a point F on the circle with diameter DE to BC, CA, AB are K, L, M, respectively, show that KL = KM.
- **5** Let t(A) denote the sum of elements of a nonempty set A of integers, and define $t(\emptyset) = 0$. Find a set X of positive integers such that for every integers k there is a unique ordered pair of disjoint subsets (A_k, B_k) of X such that $t(A_k) - t(B_k) = k$.
- **6** Find all surjective functions $f : \mathbb{N} \to \mathbb{N}$ such that for all $m, n \in \mathbb{N}$

 $f(m) \mid f(n)$ if and only if $m \mid n$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱