AoPS Community

National Olympiad Second Round 1995

www.artofproblemsolving.com/community/c5424
by xeroxia

1 Let $m_{1}, m_{2}, \ldots, m_{k}$ be integers with $2 \leq m_{1}$ and $2 m_{1} \leq m_{i+1}$ for all i. Show that for any integers $a_{1}, a_{2}, \ldots, a_{k}$ there are infinitely many integers x which do not satisfy any of the congruences

$$
x \equiv a_{i}\left(\bmod m_{i}\right), i=1,2, \ldots k
$$

2 Let $A B C$ be an acute triangle and let k_{1}, k_{2}, k_{3} be the circles with diameters $B C, C A, A B$, respectively. Let K be the radical center of these circles. Segments $A K, C K, B K$ meet k_{1}, k_{2}, k_{3} again at D, E, F, respectively. If the areas of triangles $A B C, D B C, E C A, F A B$ are u, x, y, z, respectively, prove that

$$
u^{2}=x^{2}+y^{2}+z^{2} .
$$

$3 \quad$ Let A be a real number and $\left(a_{n}\right)$ be a sequence of real numbers such that $a_{1}=1$ and

$$
1<\frac{a_{n+1}}{a_{n}} \leq A \text { for all } n \in \mathbb{N} .
$$

(a) Show that there is a unique non-decreasing surjective function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $1<$ $A^{k(n)} / a_{n} \leq A$ for all $n \in \mathbb{N}$.
(b) If k takes every value at most m times, show that there is a real number $C>1$ such that $A a_{n} \geq C^{n}$ for all $n \in \mathbb{N}$.

4 In a triangle $A B C$ with $A B \neq A C$, the internal and external bisectors of angle A meet the line $B C$ at D and E respectively. If the feet of the perpendiculars from a point F on the circle with diameter $D E$ to $B C, C A, A B$ are K, L, M, respectively, show that $K L=K M$.

5 Let $t(A)$ denote the sum of elements of a nonempty set A of integers, and define $t(\emptyset)=0$. Find a set X of positive integers such that for every integers k there is a unique ordered pair of disjoint subsets $\left(A_{k}, B_{k}\right)$ of X such that $t\left(A_{k}\right)-t\left(B_{k}\right)=k$.
$6 \quad$ Find all surjective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $m, n \in \mathbb{N}$
$f(m) \mid f(n)$ if and only if $m \mid n$.

