

AoPS Community

National Olympiad Second Round 1996

www.artofproblemsolving.com/community/c5425 by efoski1687

Day 1 December 6th

1	Let $(A_n)_{n=1}^{\infty}$ and $(a_n)_{n=1}^{\infty}$ be sequences of positive integers. Assume that for each positive integer x , there is a unique positive integer N and a unique $N - tuple$ $(x_1,, x_N)$ such that
	$0 \le x_k \le a_k$ for $k = 1, 2,N$, $x_N \ne 0$, and $x = \sum_{k=1}^N A_k x_k$.
	(a) Prove that $A_k = 1$ for some k ; (b) Prove that $A_k = A_j \Leftrightarrow k = j$; (c) Prove that if $A_k \le A_j$, then $A_k A_j$.
2	Let $ABCD$ be a square of side length 2, and let M and N be points on the sides AB and CD respectively. The lines CM and BN meet at P , while the lines AN and DM meet at Q . Prove that $ PQ \ge 1$.
3	Let <i>n</i> integers on the real axis be colored. Determine for which positive integers <i>k</i> there exists a family <i>K</i> of closed intervals with the following properties: i) The union of the intervals in <i>K</i> contains all of the colored points; ii) Any two distinct intervals in <i>K</i> are disjoint; iii) For each interval <i>I</i> at <i>K</i> we have $a_I = k.b_I$, where a_I denotes the number of integers in <i>I</i> , and b_I the number of colored integers in <i>I</i> .
Day 2	December 7th
1	A circle is tangent to sides AD , DC , CB of a convex quadrilateral $ABCD$ at K, L, M respectively. A line l , passing through L and parallel to AD , meets KM at N and KC at P . Prove that $PL = PN$.
2	Prove that $\prod_{k=0}^{n-1} (2^n - 2^k)$ is divisible by $n!$ for all positive integers n .
3	Show that there is no function $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that $f(x+y) > f(x)(1+yf(x))$ for all $x, y \in \mathbb{R}^+$.

AoPS Online AoPS Academy AoPS Content