AoPS Community

National Olympiad Second Round 1996

www.artofproblemsolving.com/community/c5425
by efoski1687

Day 1 December 6th

1 Let $\left(A_{n}\right)_{n=1}^{\infty}$ and $\left(a_{n}\right)_{n=1}^{\infty}$ be sequences of positive integers. Assume that for each positive integer x, there is a unique positive integer N and a unique $N-$ tuple $\left(x_{1}, \ldots, x_{N}\right)$ such that $0 \leq x_{k} \leq a_{k}$ for $k=1,2, \ldots N, x_{N} \neq 0$, and $x=\sum_{k=1}^{N} A_{k} x_{k}$.
(a) Prove that $A_{k}=1$ for some k;
(b) Prove that $A_{k}=A_{j} \Leftrightarrow k=j$;
(c) Prove that if $A_{k} \leq A_{j}$, then $A_{k} \mid A_{j}$.

2 Let $A B C D$ be a square of side length 2, and let M and N be points on the sides $A B$ and $C D$ respectively. The lines $C M$ and $B N$ meet at P, while the lines $A N$ and $D M$ meet at Q. Prove that $|P Q| \geq 1$.

3 Let n integers on the real axis be colored. Determine for which positive integers k there exists a family K of closed intervals with the following properties:
i) The union of the intervals in K contains all of the colored points;
ii) Any two distinct intervals in K are disjoint;
iii) For each interval I at K we have $a_{I}=k . b_{I}$, where a_{I} denotes the number of integers in I, and b_{I} the number of colored integers in I.

Day 2 December 7th

1 A circle is tangent to sides $A D, D C, C B$ of a convex quadrilateral $A B C D$ at $\mathrm{K}, \mathrm{L}, \mathrm{M}$ respectively. A line l, passing through L and parallel to $A D$, meets $K M$ at N and $K C$ at P. Prove that $P L=P N$.

2 Prove that $\prod_{k=0}^{n-1}\left(2^{n}-2^{k}\right)$ is divisible by n ! for all positive integers n.
3 Show that there is no function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that $f(x+y)>f(x)(1+y f(x))$ for all $x, y \in \mathbb{R}^{+}$.

