Art of Problem Solving

AoPS Community

National Olympiad Second Round 1999

www.artofproblemsolving.com/community/c5428
by efoski1687

Day 1 December 3rd

1 Find the number of ordered quadruples (x, y, z, w) of integers with $0 \leq x, y, z, w \leq 36$ such that $x^{2}+y^{2} \equiv z^{3}+w^{3}(\bmod 37)$.

2 Problem-2:
Given a circle with center O, the two tangent lines from a point S outside the circle touch the circle at points P and Q. Line $S O$ intersects the circle at A and B, with B closer to S. Let X be an interior point of minor arc $P B$, and let line $O S$ intersect lines $Q X$ and $P X$ at C and D, respectively. Prove that
$\frac{1}{|A C|}+\frac{1}{|A D|}=\frac{2}{|A B|}$.
3 For any two positive integers n and p, prove that there are exactly $(p+1)^{n+1}-p^{n+1}$ functions $f:\{1,2, \ldots, n\} \rightarrow\{-p,-p+1,-p+2, \ldots ., p-1, p\}$
such that $|f(i)-f(j)| \leq p$ for all $i, j \in\{1,2, \ldots, n\}$.
Day 2 December 4th
4 Find all sequences $a_{1}, a_{2}, \ldots, a_{2000}$ of real numbers such that $\sum_{n=1}^{2000} a_{n}=1999$ and such that $\frac{1}{2}<$ $a_{n}<1$ and $a_{n+1}=a_{n}\left(2-a_{n}\right)$ for all $n \geq 1$.

5 In an acute triangle $\triangle A B C$ with circumradius R, altitudes $\overline{A D}, \overline{B E}, \overline{C F}$ have lengths h_{1}, h_{2}, h_{3}, respectively. If t_{1}, t_{2}, t_{3} are lengths of the tangents from A, B, C, respectively, to the circumcircle of triangle $\triangle D E F$, prove that
$\sum_{i=1}^{3}\left(\frac{t_{i}}{\sqrt{h_{i}}}\right)^{2} \leq \frac{3}{2} R$.
6 We wish to nd the sum of 40 given numbers utilizing 40 processors. Initially, we have the number 0 on the screen of each processor. Each processor adds the number on its screen with a number entered directly (only the given numbers could be entered directly to the processors) or transferred from another processor in a unit time. Whenever a number is transferred from a processor to another, the former processor resets. Find the least time needed to nd the desired sum.

