Art of Problem Solving

AoPS Community

JBMO Shortlist 2016

www.artofproblemsolving.com/community/c542865
by Snakes, parmenides51, neverlose, sqing, knm2608, IstekOlympiadTeam

- Algebra

1 Let a, b, c be positive real numbers such that $a b c=8$. Prove that $\frac{a b+4}{a+2}+\frac{b c+4}{b+2}+\frac{c a+4}{c+2} \geq 6$.
2 Let a, b, cbe positive real numbers. Prove that

$$
\frac{8}{(a+b)^{2}+4 a b c}+\frac{8}{(b+c)^{2}+4 a b c}+\frac{8}{(a+c)^{2}+4 a b c}+a^{2}+b^{2}+c^{2} \geq \frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3} .
$$

$3 \quad$ Find all the pairs of integers (m, n) such that $\sqrt{n+\sqrt{2016}}+\sqrt{m-\sqrt{2016}} \in \mathbb{Q}$.
4 If the non-negative reals x, y, z satisfy $x^{2}+y^{2}+z^{2}=x+y+z$. Prove that

$$
\frac{x+1}{\sqrt{x^{5}+x+1}}+\frac{y+1}{\sqrt{y^{5}+y+1}}+\frac{z+1}{\sqrt{z^{5}+z+1}} \geq 3
$$

When does the equality occur?

Proposed by Dorlir Ahmeti, Albania

$5 \quad$ Let x, y, z be positive real numbers such that $x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Prove that

$$
x+y+z \geq \sqrt{\frac{x y+1}{2}}+\sqrt{\frac{y z+1}{2}}+\sqrt{\frac{z x+1}{2}} .
$$

Proposed by Azerbaijan

Let x, y, z be positive real numbers such that $x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Prove that

$$
x+y+z \geq \sqrt{\frac{x^{2}+1}{2}}+\sqrt{\frac{y^{2}+1}{2}}+\sqrt{\frac{z^{2}+1}{2}} .
$$

- Combinatorics

1 Let S_{n} be the sum of reciprocal values of non-zero digits of all positive integers up to (and including) n. For instance, $S_{13}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{1}+\frac{1}{2}+\frac{1}{1}+\frac{1}{3}$. Find the least positive integer k making the number $k!\cdot S_{2016}$ an integer.

2016 JBMO Shortlist

2 The natural numbers from 1 to 50 are written down on the blackboard. At least how many of them should be deleted, in order that the sum of any two of the remaining numbers is not a prime?

3 A 5×5 table is called regular f each of its cells contains one of four pairwise distinct real numbers,such that each of them occurs exactly one in every 2×2 subtable.The sum of all numbers of a regular table is called the total sum of the table. With any four numbers, one constructs all possible regular tables,computes their total sums and counts the distinct outcomes.Determine the maximum possible count.

4 A splitting of a planar polygon is a fi nite set of triangles whose interiors are pairwise disjoint, and whose union is the polygon in question. Given an integer $n \geq 3$, determine the largest integer m such that no planar n-gon splits into less than m triangles.

- Geometry

1 Let $A B C$ be an acute angled triangle, let O be its circumcentre, and let D, E, F be points on the sides $B C, C A, A B$, respectively. The circle $\left(c_{1}\right)$ of radius $F A$, centered at F, crosses the segment $O A$ at A^{\prime} and the circumcircle (c) of the triangle $A B C$ again at K. Similarly, the circle $\left(c_{2}\right)$ of radius $D B$, centered at D, crosses the segment $(O B)$ at B^{\prime} and the circle (c) again at L. Finally, the circle (c_{3}) of radius $E C$, centered at E, crosses the segment $(O C)$ at C^{\prime} and the circle (c) again at M. Prove that the quadrilaterals $B K F A^{\prime}, C L D B^{\prime}$ and $A M E C^{\prime}$ are all cyclic, and their circumcircles share a common point.

Evangelos Psychas (Greece)
2 Let $A B C$ be a triangle with $\angle B A C=60^{\circ}$. Let D and E be the feet of the perpendiculars from A to the external angle bisectors of $\angle A B C$ and $\angle A C B$, respectively. Let O be the circumcenter of the triangle $A B C$. Prove that the circumcircles of the triangles $A D E$ and $B O C$ are tangent to each other.

3 A trapezoid $A B C D(A B \| C F, A B>C D)$ is circumscribed. The incircle of the triangle $A B C$ touches the lines $A B$ and $A C$ at the points M and N,respectively.Prove that the incenter of the trapezoid $A B C D$ lies on the line $M N$.

4 Let $A B C$ be an acute angled triangle whose shortest side is $B C$. Consider a variable point P on the side $B C$, and let D and E be points on $A B$ and $A C$, respectively, such that $B D=B P$ and $C P=C E$. Prove that, as P traces $B C$, the circumcircle of the triangle $A D E$ passes through a fixed point.

5 Let $A B C$ be an acute angled triangle with orthocenter H and circumcenter O. Assume the circumcenter X of $B H C$ lies on the circumcircle of $A B C$. Reflect O across X to obtain O^{\prime}, and let the lines $X H$ and $O^{\prime} A$ meet at K. Let L, M and N be the midpoints of $[X B],[X C]$ and
[$B C]$, respectively. Prove that the points K, L, M and N are concyclic.
6 Given an acute triangle $A B C$, erect triangles $A B D$ and $A C E$ externally, so that $\angle A D B=\angle A E C=90^{\circ}$ and $\angle B A D=\angle C A E$. Let $A_{1} \in B C, B_{1} \in A C$ and $C_{1} \in A B$ be the feet of the altitudes of the triangle $A B C$, and let K and K, L be the midpoints of $\left[B C_{1}\right]$ and $B C_{1}, C B_{1}$, respectively. Prove that the circumcenters of the triangles $A K L, A_{1} B_{1} C_{1}$ and $D E A_{1}$ are collinear.
(Bulgaria)
$7 \quad$ Let $A B$ be a chord of a circle (c) centered at O, and let K be a point on the segment $A B$ such that $A K<B K$. Two circles through K, internally tangent to (c) at A and B, respectively, meet again at L. Let P be one of the points of intersection of the line $K L$ and the circle (c), and let the lines $A B$ and $L O$ meet at M. Prove that the line $M P$ is tangent to the circle (c).
Theoklitos Paragyiou (Cyprus)

- Number Theory

1 Determine the largest positive integer n that divides $p^{6}-1$ for all primes $p>7$.
2 Find the maximum number of natural numbers $x_{1}, x_{2}, \ldots, x_{m}$ satisfying the conditions:
a) No $x_{i}-x_{j}, 1 \leq i<j \leq m$ is divisible by 11 , and
b) The sum $x_{2} x_{3} \ldots x_{m}+x_{1} x_{3} \ldots x_{m}+\cdots+x_{1} x_{2} \ldots x_{m-1}$ is divisible by 11 .

3 Find all positive integers n such that the number $A_{n}=\frac{2^{4 n+2}+1}{65}$ is
a) an integer,
b) a prime.

4 Find all triplets of integers (a, b, c) such that the number

$$
N=\frac{(a-b)(b-c)(c-a)}{2}+2
$$

is a power of 2016 .
(A power of 2016 is an integer of form 2016^{n}, where n is a non-negative integer.)
5 Determine all four-digit numbers $\overline{a b c d}$ such that $(a+b)(a+c)(a+d)(b+c)(b+d)(c+d)=\overline{a b c d}$:

