Art of Problem Solving

AoPS Community

JBMO Shortlist 2010

www.artofproblemsolving.com/community/c542883
by Snakes, Ahiles, YasmineMath, phymaths, tnoodee, YESMAths, MinatoF, parmenides51, den_thewhitelion

- Algebra

1 The real numbers a, b, c, d satisfy simultaneously the equations

$$
a b c-d=1, \quad b c d-a=2, \quad c d a-b=3, \quad d a b-c=-6 .
$$

Prove that $a+b+c+d \neq 0$.
2 Determine all four digit numbers $\bar{a} \bar{b} \bar{c} \bar{d}$ such that

$$
a(a+b+c+d)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(a^{6}+2 b^{6}+3 c^{6}+4 d^{6}\right)=\bar{a} \bar{b} \bar{c} \bar{d}
$$

$3 \quad$ Find all pairs (x, y) of real numbers such that $|x|+|y|=1340$ and $x^{3}+y^{3}+2010 x y=670^{3}$.
4 Let a, b, c be real positive numbers such that $a b c(a+b+c)=3$
Prove that $(a+b)(b+c)(c+a) \geq 8$
5 Let $x, y, z>0$ with $x \leq 2, y \leq 3$ and $x+y+z=11$
Prove that $x y z \leq 36$

- Combinatorics

1 Problem C. 1

There are two piles of coins, each containing 2010 pieces. Two players A and B play a game taking turns (A plays first). At each turn, the player on play has to take one or more coins from one pile or exactly one coin from each pile. Whoever takes the last coin is the winner. Which player will win if they both play in the best possible way?

2 A 9×7 rectangle is tiled with tiles of the two types: L-shaped tiles composed by three unit squares (can be rotated repeatedly with 90°) and square tiles composed by four unit squares. Let $n \geq 0$ be the number of the 2×2 tiles which can be used in such a tiling. Find all the values of n.

- Geometry

1 Problem G1

Consider a triangle $A B C$ with $\angle A C B=90^{\circ}$. Let F be the foot of the altitude from C. Circle ω touches the line segment $F B$ at point P, the altitude $C F$ at point Q and the circumcircle of $A B C$ at point R. Prove that points A, Q, R are collinear and $A P=A C$.

2 Let $A B C$ be acute-angled triangle. A circle $\omega_{1}\left(O_{1}, R_{1}\right)$ passes through points B and C and meets the sides $A B$ and $A C$ at points D and E, respectively . Let $\omega_{2}\left(O_{2}, R_{2}\right)$ be the circumcircle of triangle $A D E$. Prove that $O_{1} O_{2}$ is equal to the circumradius of triangle $A B C$.

3 Consider a triangle $A B C$ and let M be the midpoint of the side $B C$. Suppose $\angle M A C=\angle A B C$ and $\angle B A M=105^{\circ}$. Find the measure of $\angle A B C$.

4 Let $A L$ and $B K$ be angle bisectors in the non-isosceles triangle $A B C$ (L lies on the side $B C$, K lies on the side $A C$). The perpendicular bisector of $B K$ intersects the line $A L$ at point M. Point N lies on the line $B K$ such that $L N$ is parallel to $M K$. Prove that $L N=N A$.

- Number Theory

1 Find all integers $n, n \geq 1$, such that $n \cdot 2^{n+1}+1$ is a perfect square.
2 Find n such that $36^{n}-6$ is the product of three consecutive natural numbers

